• Title/Summary/Keyword: 파워 게이팅

Search Result 6, Processing Time 0.018 seconds

Robust Placement Method for IR Drop in Power Gating Design (파워 게이팅 설계에서 IR Drop에 견고한 셀 배치 방법)

  • Kwon, Seok Il;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.55-66
    • /
    • 2016
  • Power gating is one of effective techniques for reducing leakage current in semiconductor chip. However, power gating cell (PGC) which is used to switch the power source causes performance degradation and the associated reliability problem by increasing IR drop. However, the newly raised problem caused by different scaling properties between gates and metal wires demands additional considerations in power gating design. In this paper, we propose a robust cell placement based power gating design method for reducing the area for power gating cell and metal routing thus to meet IR drop requirement. Experimental results by applying the proposed techniques on the application processor for smartphone fabricated in 28nm CMOS process show that power gating cell area is reduced by 16.16% and maximum IR drop value is also decreased by 8.49% compared to existing power gating cell placement techniques.

Header-Based Power Gating Structure Considering NBTI Aging Effect (NBTI 노화 효과를 고려한 헤더 기반의 파워게이팅 구조)

  • Kim, Kyung-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.2
    • /
    • pp.23-30
    • /
    • 2012
  • This paper proposes a novel adaptive header-based power gating structure to compensate for the performance loss and the increased wake-up time of the power gating structures induced by the negative bias temperature instability (NBTI) effect. The proposed structure consists of variable width footers based on the two-pass power gating and a new NBTI sensing circuit for an adaptive control. The simulation results of the proposed structure are compared to those of power gating without the adaptive control and show that both the circuit-delay and wake-up time dependence of the power gating structure on the NBTI stress is minimized with only 3% and 4% increase, respectively while keeping small leakage power and rush-current. In this paper, a 45 nm CMOS technology and predictive NBTI model have been used to implement the proposed circuits.

Design of a new adaptive circuit to compensate for aging effects of nanometer digital circuits (나노미터 디지털회로의 노화효과를 보상하기위한 새로운 적응형 회로 설계)

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.6
    • /
    • pp.25-30
    • /
    • 2013
  • In nanoscale MOSFET technology, aging effects such as Negative Bias Temperature Instability(NBTI), Hot carrier Injection(HCI), Time Dependent Dielectric Breakdown (TDDB) and so on which affect circuit reliability can lead to severe degradation of digital circuit performance. Therefore, this paper has proposed the adaptive compensation circuit to overcome the aging effects of digital circuits. The proposed circuit deploys a power gating structure with variable power switch width and variable forward body-biasing voltage in order to adaptively compensate for aging induced performance degradation, and has been designed in 45nm technology.

Design of a Low Power Reconfigurable DSP with Fine-Grained Clock Gating (정교한 클럭 게이팅을 이용한 저전력 재구성 가능한 DSP 설계)

  • Jung, Chan-Min;Lee, Young-Geun;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.82-92
    • /
    • 2008
  • Recently, many digital signal processing(DSP) applications such as H.264, CDMA and MP3 are predominant tasks for modern high-performance portable devices. These applications are generally computation-intensive, and therefore, require quite complicated accelerator units to improve performance. Designing such specialized, yet fixed DSP accelerators takes lots of effort. Therefore, DSPs with multiple accelerators often have a very poor time-to-market and an unacceptable area overhead. To avoid such long time-to-market and high-area overhead, dynamically reconfigurable DSP architectures have attracted a lot of attention lately. Dynamically reconfigurable DSPs typically employ a multi-functional DSP accelerator which executes similar, yet different multiple kinds of computations for DSP applications. With this type of dynamically reconfigurable DSP accelerators, the time to market reduces significantly. However, integrating multiple functionalities into a single IP often results in excessive control and area overhead. Therefore, delay and power consumption often turn out to be quite excessive. In this thesis, to reduce power consumption of dynamically reconfigurable IPs, we propose a novel fine-grained clock gating scheme, and to reduce size of dynamically reconfigurable IPs, we propose a compact multiplier-less multiplication unit where shifters and adders carry out constant multiplications.

Analysis of Aging Phenomena in Nanomneter MOSFET Power Gating Structure (나노미터 MOSFET 파워 게이팅 구조의 노화 현상 분석)

  • Lee, Jinkyung;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.292-296
    • /
    • 2017
  • It has become ever harder to design reliable circuits with each nanometer technology node under normal operation conditions, a transistor device can be affected by various aging effects resulting in performance degradation and eventually design failure. The reliability (aging) effect has traditionally been the area of process engineers. However, in the future, even the smallest of variations can slow down a transistor's switching speed, and an aging device may not perform adequately at a very low voltage. Because of such dilemmas, the transistor aging is emerging as a circuit designer's problem. Therefore, in this paper, the impact of aging effects on the delay and power dissipation of digital circuits by using nanomneter MOSFET power gating structure has been analyzed.. Based on this analyzed aging models, a reliable digital circuits can be designed.

Design and Implementation of a new aging sensing circuit based on Flip-Flops (플립플롭 기반의 새로운 노화 센싱 회로의 설계 및 구현)

  • Lee, Jin-Kyung;Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.4
    • /
    • pp.33-39
    • /
    • 2014
  • In this paper, a new on-chip aging sensing circuit based on flip-flops is proposed to detect a circuit failure of MOSFET digital circuits casued by aging phenomenon such as HCI and BTI. The proposed circuit uses timing windows to warn against a guardband violation of sequential circuits, and generates three warning bits right before circuit failures occur. The generated bits can apply to an adaptive self-tuning method for reliable system design as control signals. The aging sensor circuit has been implemented using 0.11um CMOS technology and evaluated by $4{\times}4$ multiplier with power gating structure.