• Title/Summary/Keyword: 트러스형상

Search Result 88, Processing Time 0.021 seconds

Initial Shape Design of Space Truss Structure using Density Method (밀도법을 이용한 스페이스 트러스 구조물의 초기 형상 설계)

  • Kim, Ho-Soo;Park, Young-Sin;Yang, Myung-Kyu;Lee, Min-Ho;Kim, Jae-Yoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.59-66
    • /
    • 2010
  • This study presents the topology optimization technique by density method to determine the initial shape of space truss structures. Most initial shape design is performed by designer's previous experiences and trial and error method instead of the application of reasonable optimization method. Thus, the reasonable and economical optimization methods are needed to be introduced for the initial shape design. Therefore, we set design domain for cantilever space truss structure as an example model. And topology optimization is used to obtain optimum layout for them, and then size optimization method is used to find the optimum member size. Therefore, the reasonable initial optimal shapes of spatial truss structures can be obtained through the topology and size optimization using density method.

  • PDF

Investigations of Structural Behaviors of Steel Tower Structures by Frame Shape Variation (철탑구조의 트러스형상 변화에 따른 구조거동 분석)

  • Moon, Mi Young;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.261-268
    • /
    • 2017
  • The purpose of this study is to analyze the ultimate strength and behavior of triangular and rectangular frames in steel towers. Investigations of collapse mechanism including local and global failures of partial frame are carried out through finite element analysis and small scaled experiments. Ultimate strength and deformation are investigated in case of shape variations with change of the interior and exterior frames. The efficiency of rectangular frame saving sub-brace members are verified with comparisons of the ultimate strength of triangular frames.

Optimum Design for Sizing and Shape of Truss Structures Using Harmony Search and Simulated Annealing (하모니 서치와 시뮬레이티드 어넬링을 사용한 트러스의 단면 및 형상 최적설계)

  • Kim, Bong Ik
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.131-142
    • /
    • 2015
  • In this paper, we present an optimization of truss structures subjected to stress, buckling, and natural frequency constraints. The main objective of the present study is to propose an efficient HA-SA algorithm for solving the truss optimization subject to multiple constraints. The procedure of hybrid HA-SA is a search method which a design values in harmony memory of harmony search are used as an initial value designs in simulated annealing search method. The efficient optimization of HA-SA is illustrated through several optimization examples. The examples of truss structures are used 10-Bar truss, 52-Bar truss (Dome), and 72-Bar truss for natural frequency constraints, and used 18-Bar truss and 47-Bar (Tower) truss for stress and buckling constraints. The optimum results are compared to those of different techniques. The numerical results are demonstrated the advantages of the HA-SA algorithm in truss optimization with multiple constraints.

Form-finding Analysis of Cable Networks Considering a Flexibility of the Structures for Mesh Reflector Antennas (구조 유연도를 고려한 메쉬 반사판 안테나의 케이블 네트워크 형상 설계)

  • Roh, Jin-Ho;Choi, Hye-Yoon;Jung, Hwa-Young;Kim, Hyo-Tae;Yun, Ji-Hyeon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.68-76
    • /
    • 2022
  • The purpose of this paper was to design the cable networks for mesh reflector antennas, considering the flexibility of structures. An effective form-find methodology is proposed. The whole parts of the cable networks are described by the absolute nodal coordinate formulation. Additionally, nonlinear deformation of the cable can be obtained. The form-finding analysis of the reflector with standard configuration is performed, to validate the proposed methodology. The truss ring structure is numerically modeled using the frame elements. To consider the flexibility of the truss ring as well as the cable net structure, an iteration analysis between the truss ring and the cable net under tensional forces is also performed in the form-finding process. The finial configuration of the reflector with tensioned cable networks is demonstrated.

Shape Scheme and Size Discrete Optimum Design of Plane Steel Trusses Using Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 평면 철골트러스의 형상계획 및 단면 이산화 최적설계)

  • Kim, Soo-Won;Yuh, Baeg-Youh;Park, Choon-Wok;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.89-97
    • /
    • 2004
  • The objective of this study is the development of a scheme and discrete optimum design algorithm, which is based on the genetic algorithm. The algorithm can perform both scheme and size optimum designs of plane trusses. The developed Scheme genetic algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of structures and the constraints are limits on loads and serviceability. The basic search method for the optimum design is the genetic algorithm. The algorithm is known to be very efficient for the discrete optimization. However, its application to the complicated structures has been limited because of the extreme time need for a number of structural analyses. This study solves the problem by introducing the size & scheme genetic algorithm operators into the genetic algorithm. The genetic process virtually takes no time. However, the evolutionary process requires a tremendous amount of time for a number of structural analyses. Therefore, the application of the genetic algorithm to the complicated structures is extremely difficult, if not impossible. The scheme genetic algorithm operators was introduced to overcome the problem and to complement the evolutionary process. It is very efficient in the approximate analyses and scheme and size optimization of plane trusses structures and considerably reduces structural analysis time. Scheme and size discrete optimum combined into the genetic algorithm is what makes the practical discrete optimum design of plane fusses structures possible. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying the algorithm to various optimum design examples: plane pratt, howe and warren truss.

  • PDF

Shape Optimization of the Plane Truss Structures with the Statical and Natural Frequency Constraints (정적(靜的) 및 고유진동수(固有振動數) 제약조건식(制約條件式)을 고려(考慮)한 평면(平面) 트러스 구조물(構造物)의 형상최적화(形狀最適化)에 관(關)한 연구(硏究))

  • Lee, Gyu Won;Lee, Gun Tea
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.23-38
    • /
    • 1990
  • In this study, decompositive optimization method of two levels was selected to optimize effectively the geometry of the truss which takes the multi-loading condition, and the allowable stress, bucking stress, displacement and natural frequency constraints into consideration. The algorithm of this study is made up of sectional optimization using the feasible direction method in level 1, and geometrical optimization employing Powell's one-direction search method which menimizes only objictive function in level 2. The results of this study acquired by beenning applied to structural model of the truss are as follows : 1. It is verified that the algorithm of this study effectively converges, independent of the initial geometry of the truss and the applied various constraints. 2. The optimum goemetry of the truss varies more considerably according to the constraints selected. 3. Under the condition of the same design, the weight of the truss can be decreased more considerably by means of optimizing even the geometry of truss than by means of optimizing the section of truss while fixing geometrical configuration of it, even though there might be a little difference according to the initial geometry of the truss and the design condition.

  • PDF

Experimental Verification of Nondestructive Damage Detection in a Truss Structure (트러스 구조물 내 손상부위 추적에 관한 실험적 검증)

  • Park, Soo-Yong;Choi, Sang-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.147-156
    • /
    • 2003
  • In this paper, a damage detection method using mode shapes of truss structures is presented. The theory is formulated based on the changes in the modal strain energy in a truss type structures due to damage. To examine the feasibility, the theory is applied to an experimental data of a 1:6 scale model of a typical hexagonal truss structure. The experiment consists of 17 damage scenarios subjected to three different types of damage. The damage evaluation results show that the proposed method detects successfully damage in truss elements and also show that the performance of proposed method can be significantly impacted by the noise in the measurement data for small damage.

Size and Shape Optimization of Truss Structures using Micro Genetic Algorithm (마이크로 유전 알고리즘을 이용한 트러스 구조물의 단면 및 형상 최적화)

  • Kim, Dae-Hwan;Yoon, Byoung-Wook;Lee, Jae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.465-474
    • /
    • 2011
  • In this study, a microgenetic algorithm was used to find the optimum cross-section and shape of dome structures. The allowable stress and Euler buckling stress were considered constraints when the weight of the trusses was minimum. The design optimization of the truss structures involved arriving at the optimum sizes of the cross-section and geometric coordinate. The features of the proposed method, which helped in the modeling of and application to the optimal design of truss structures, were demonstrated using the microgenetic algorithm, by solving sample problems.

Shape Optimization of Plane Truss Structures (평면(平面)트러스 구조물(構造物)의 형상최적화(形狀最適化))

  • Kim, Soung Wan;Lee, Gyu Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.1-15
    • /
    • 1986
  • The algorithm Proposed utilizes the two-levels technique. In the first level which consists of two phases, the cross-sectional area of the truss member is optimized by transforming the nonlinear problem into SUMT, and solving SUMT utilizing the modified Newton-Rahson method. In the second level, the geometric shape is optimized utilizing the unindirectional search technique of the Powell method which make it possible to minimize only the objective function. The algorithm Proposed in this study is numerically tested for several truss structures with various shapes, loading conditions and design criteria, and compared with the results of the other algorithms to examine its applicability and stability. The numerical comparisons show that the two-Levels algorithm Proposed in this study is safely applicable to any design criteria, and the convergency rate is relathely fast and stable compared with other iteration methods for the geometric optimization of truss structures.

  • PDF

Shape Optimization of the Plane Truss Structures by Mixed Cooridination Method (혼합조정법(混合調整法)에 의한 평면(平面) 트러스 구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(硏究))

  • Lee, Gyu Won;Lim, Jeong Whan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.55-68
    • /
    • 1991
  • In this study, Mixed coordination method was selected to optimize the shape of the truss structures which takes multi-loading condition, allowable stress, buckling stress, displacement constraints into consideration. The structure was devided into substructures by Goal coordination method and the substructures were optimized by model coordination method which used two-level technique. Therefore the number of design variables and constrints can be decreased considerable. Under the condition of the same disign, the weight of truss structures can be decreased more considerable by means of optimizing even the shape of truss than by means of optimizing the section of truss while fixing geometrical configuration of it, even though there might be a little difference according to the early geomatrical shape of the truss and the design condition. Thus, the shape optimization of truss structures which utilize the results of this study can be helpful to the economical design of truss structures.

  • PDF