DOI QR코드

DOI QR Code

Form-finding Analysis of Cable Networks Considering a Flexibility of the Structures for Mesh Reflector Antennas

구조 유연도를 고려한 메쉬 반사판 안테나의 케이블 네트워크 형상 설계

  • 노진호 (항공우주 및 기계공학부, 한국항공대학교) ;
  • 최혜윤 (C4ISTAR 기계융합연구소, LIG넥스원) ;
  • 정화영 (C4ISTAR 기계융합연구소, LIG넥스원) ;
  • 김효태 (C4ISTAR 기계융합연구소, LIG넥스원) ;
  • 윤지현 (C4ISTAR 기계융합연구소, LIG넥스원)
  • Received : 2022.06.03
  • Accepted : 2022.06.26
  • Published : 2022.08.31

Abstract

The purpose of this paper was to design the cable networks for mesh reflector antennas, considering the flexibility of structures. An effective form-find methodology is proposed. The whole parts of the cable networks are described by the absolute nodal coordinate formulation. Additionally, nonlinear deformation of the cable can be obtained. The form-finding analysis of the reflector with standard configuration is performed, to validate the proposed methodology. The truss ring structure is numerically modeled using the frame elements. To consider the flexibility of the truss ring as well as the cable net structure, an iteration analysis between the truss ring and the cable net under tensional forces is also performed in the form-finding process. The finial configuration of the reflector with tensioned cable networks is demonstrated.

본 논문에서는 기하학적 특성을 고려한 케이블 네트 형상설계 방법론을 제시하고, 트러스 링 그리고 케이블 네트의 구조 유연도를 고려한 반사판 안테나의 케이블 네트워크 형상 실효성을 검증한다. 기하학적 비선형성을 고려한 케이블 네트의 유한요소 모델을 개발한다. 경계조건의 하중에 따른 형상변형 해석을 통하여, 케이블 네트의 형상 설계변수 특성을 제시 한다. 프레임 요소를 이용하여 전개형 트러스 링 구조를 모델링하고 정적 하중 해석을 수행한다. 전개된 링 구조에 가해지는 장력에 의해 케이블 네트 반사판은 정확한 형상을 유지하게 된다. 가해지는 장력, 케이블 네트 그리고 트러스 링 구조의 유연도를 고려하여, 케이블 네트워크 형상설계에 반영하고 최종 형상을 제시한다.

Keywords

Acknowledgement

이 연구는 LIG NEX1 산학협력과제 지원으로 연구되었음

References

  1. A.G. Tiber, "Deployable tensegrity structures for space applications," Doctoral Thesis, Royal Institute of Technology, Department of Mechanics, Stockholm, Sweden, 2002.
  2. C.J. Magenot, J. Saniago-Prowald, and K. Klooster, "Large reflector antenna working group final report," ESA Technical Note, TEC-EEA, 2010.
  3. K. Miura and Y. Miyazaki, "Concept of the tension truss antenna," AIAA Journal, vol. 28, no. 6, pp. 1098-1104, 1990. https://doi.org/10.2514/3.25172
  4. L. Datashvili, "Review and evaluation of the existing designs/technologies for space large deployable apertures," International Scientific Conference on Advanced Lightweight Structures and Reflector Antennas, Tbilisi, Georgia, 2009.
  5. A. Robederer, Historical overview of the development of space antennas, Space Antenna Handbook, Wiley, New York, pp. 250-307. 2012.
  6. Astro Aerospace, AstroMeshTM deployable reflector data sheet DS-409 07/04, Northrop Grumman Space Technology, 2004.
  7. H.-J. Schek, "The force density method for form finding and computation of general networks," Computer Methods in Applied Mechanics and Engineering, vol. 3. pp. 115-134, 1974. https://doi.org/10.1016/0045-7825(74)90045-0
  8. L. Tuanjie, J. Jie, D. Hanqing, L. Zhanchao, and W. Zuowei, "Form-finding method for deployable mesh reflector antennas," Chinese Journal of Aeronautics, vol. 26, no. 5, pp. 1276-1282, 2013 https://doi.org/10.1016/j.cja.2013.04.062
  9. P. Li, C. Liu, Q. Tian, H. Hu, and Y. Song, "Dynamics of a deployable mesh reflector of satellite antenna: fromfinding and modal analysis," Journal of Computational and Nonlinear Dynamics, vol. 11, 041017, 2016
  10. B. Yang, H. Shi, M. Thomson, and H. Fang, "Optimal design of initial surface profile of deployable mesh reflector via static modeling and quadratic programming," 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, May 2009, AIAA 2009-2173.
  11. H. Shi, S. Yuan and B. Yang, "New methodology of surface mesh geometry design for deployable mesh reflector," Journal of Spacecraft and Rockets, vol. 55, no. 2, pp. 266-281, 2018. https://doi.org/10.2514/1.a33867
  12. P. Fanning and L. Hollaway, "The deployment analysis of a large space antenna," International Journal of Space Structures, vol. 8, no. 3, 1993.
  13. K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982.
  14. A. Jennings, "Frame analysis including change of geometry," Journal of the Structural Division, vol. 94, no. 3, pp. 627-644, 1968. https://doi.org/10.1061/JSDEAG.0001908
  15. M. M. Irvine, Cable structures, MIT Press, pp. 47-57, 1981.