• Title/Summary/Keyword: 토양미생물군집 활성도

Search Result 42, Processing Time 0.031 seconds

Effect of Forest Fire on the Microbial Community Activity of Forest Soil according to the Difference between Geology and Soil Depth (산불이 지질과 토심의 차이에 따른 산림토양 미생물 군집 활성도에 미치는 영향에 대한 연구)

  • Ji Seul Kim;Jun Ho Kim;Hyeong Chul Jeong;Eun Young Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • The effects of forest fires on the activity of microbial communities in topsoil and subsoil were investigated. Samples were collected from Korean forest soils comprising mainly igneous and sedimentary rocks. Analysis of beta-glucosidase, found higher microbial activity in sedimentary rocks than in igneous rocks. Enzyme activity was not observed immediately after fire, but was restored over time. The enzyme activity of subsoil was inhibited by 33~46% compared with that in the topsoil, regardless of soil damage. The effect of fire on the availability of microbial substrate was investigated using EcoPlate. The percentages of average well color development values of damaged and normal topsoil were 52.7~56.8% and 62.3~83.6%, respectively. Forest fires appear to affect the diversity and substrate availability of the subsoil microbial community by accelerating the decomposition of soil organic matter. The Shanon index, representing microbial biodiversity, was high in the topsoil of all samples; it was higher for soil microorganisms in sedimentary rocks than in igneous rocks, and higher in topsoil than in subsoil.

Compare of Phragmites communis Trin. communities in Han river estuarine wetland of dominant species and different soil characteristics (우점종과 토양특성이 다른 한강하구 습지의 갈대군집 비교)

  • Lee, Sang-Mi;Kang, Ho-Jeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2132-2137
    • /
    • 2009
  • 갈대(Phragmites communis Trin.)란 염분이 있는 곳에서 자라는 염생식물로서 우리나라 전역에 분포하고 있다. 지난 50년 동안 우리나라의 여러 습지에 걸쳐서 갈대는 우점종으로 자라왔고, 육지와 수중서식지에서 갈대의 확산범위는 증가하고 있다. 갈대의 확산은 다른 습지 식물의 서식지를 파괴하고, 갈대가 번식하면 동 식물들의 번식 자체가 어려울 뿐 아니라 갈대숲에 포식자가 늘어나 살아가기 어려운 환경으로 변하기때문에 갈대를 체계적으로 관리할 수 있는 방안이 마련되어야 한다. 본 연구는 우점종이 다른 두 습지에서 갈대군집의 성장률을 관찰하고, 토양의 화학적 분석과 식물의 생리적 분석을 통해 갈대군집 성장에 미치는 영양염류의 영향을 규명하였다. 연구 대상지는 한강하구에 위치한 장항습지와 성동습지로서 동일하게 갈대가 분포하며, 장항습지에는 줄 군락이 성동습지에는 새섬매자기 군락이 우점하고 있다. 분석 항목은 이화학적 항목을 비롯하여 용존유기탄소(DOC, dissolved organic carbon), 체외미생물효소활성도(Extracellular enzyme activities), 암모니아성 질소($NH_4^+$), 질산성 질소($NO_3^-$)을 분석하였다. 실험결과, 두 습지 갈대의 성장은 7월부터 9월에 증가하였고 성동습지의 토양성분이 점토질로 형성되어 높은 수분함량과 유기물함량을 유지하고 있기 때문에 갈대의 밀도가 높고 성장률이 활발한 것으로 나타났다. 또한 미생물활성과 환경인자간 양의 상관관계를 보아 환경인자들이 미생물 활성을 자극하고 미생물들은 식물의 성장을 촉진하여 영향을 주며, 반면 식물 뿌리는 enzyme을 생성하는 미생물에게 C 삼출물을 공급해 enzyme 활성에 영향을 미칠 것으로 사료된다.

  • PDF

Effects of Diesel Oil on the Population and Activity of Soil Microbial Community (토양미생물군집의 개체수와 활성도에 미치는 경유의 영향)

  • Seo, Eun-Young;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.163-171
    • /
    • 1994
  • The effects of diesel oil on the microbial community in sandy loam soil were investigated, and the effects of bioremediation which was performed to enhance the removal of diesel oil from soil were also measured. The residual percentage of diesel oil was about 50% after 16 week incubation period. The bioremediation treatment increased the removal rate at 60~95%. When the soil was contaminated with diesel oil, the direct bacterial count, length of fungal hyphae, aerobic heterotroph and hydrocarbon degrader were increased by 2~3 orders of magnitude. The bioremediation further increased these numbers 10 to 100-fold. There were no difinite patterns of change in fluorescein diacetate hydrolysis activity in bioremediation-untreated soil, but about 10 times of increase of activity was observed in bioremediation-treated soil. Similar change was occurred in soil dehydrogenase activity.

  • PDF

The Effects of Soybean Cultivation on Soil Microorganism Activity (콩 재배가 토양 미생물 군집 활성도에 미치는 영향)

  • Bak, Gyeryeong;Lee, Gyejun;Kim, Taeyoung
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.76-82
    • /
    • 2019
  • BACKGROUND: For sustainable agriculture, there are various agricultural practices including low input. Over the last few decades high input of chemical fertilizer and compounds results in environmental pollution and deterioration of soil fertility. Soybean (Glycine max L.) is well known eco-friendly crop due to their symbionts. Soybean has a relationship with nitrogen fixation bacteria called rhizobia. In this research work, we investigated effects of soybean cultivation on soil microorganism activities. METHODS AND RESULTS: Experiments were conducted in pots and potato cultivation was used as reference. Soil chemical properties were analyzed considering soil nutrient over cropping period. For the soil microbial community analysis, dehydrogenase activity analysis (DHA) analyzed along with denaturing gradient gel electrophoresis. The results showed that higher soil organic matter in the soybean cultivation soil than in the potato cultivation soil. Available $P_2O_5$ concentration increased gradually in both pots but showed higher value in the potato cultivation soil. DHA value implying microbial activities showed higher value in the soybean cultivation soil over all cropping period. CONCLUSION: The cause of high microbial activity in the soybean cultivation soil was considered to the effects of some specific microorganisms related to soybean cultivation. Therefore, the availability of soybean cultivation for sustainable agriculture should be encouraged in terms of microorganism community activity in soil.

Size-dependent Toxicity of Metal Oxide Particles on the Soil Microbial Community and Growth of Zea Mays (산화 금속 입자 크기가 옥수수의 성장과 토양 미생물 군집에 미치는 독성)

  • Kim, Sung-Hyun;Jung, Mi-Ae;Lee, In-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1069-1074
    • /
    • 2009
  • This study investigated soil microbial community and growth of Zea mays to compare the toxicity of nano and micro-sized Cu and Zn oxide particles in microcosm system. In the presence of nanoparticles, biomass of Zea mays reduced by 30% compared with micro-sized particles and inhibited growth. Dehydrogenase activity was inhibited by CuO nano although it was increased by ZnO nano particles. According to the Biolog test, the microbial diversity was decreased after exposed to CuO nanoparticles and ZnO microparticles. Therefore, though it is widely recognized that nanoparticles are more harmful than microparticles, we can conclude that the diversity of microbial community does not always influenced by the size of particles of nano and micro.

Culture-Independent Methods of Microbial Community Structure Analysis and Microbial Diversity in Contaminated Groundwater with Major Pollutants (주요 오염물질로 오염된 지하수에서 미생물의 무배양식 군집분석방법과 미생물상에 대한 조사방법 연구)

  • Kim Jai-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.66-77
    • /
    • 2006
  • This review inquired the recently applied molecular biological and biochemical methods analyzing the microbial community structure of groundwater and, as a result, summarized the functional or taxonomic groups of active microorganisms with major contaminants in groundwater. The development of gene amplification through PCR has been possible to figure out microbial population and identification. Active microbial community structures have been analyzed using a variety of fingerprinting techniques such as DGGE, SSCP, RISA, and microarray and fatty acid analyses such as PLFA and FAME, and the activity of a specific strain has been examined using FISH. Also, this review included the dominant microflora in groundwater contaminated with fuel components such as n-alkanes, BTEX, MTBE, and ethanol and chlorinated compounds such as TCE, PCE, PCB, CE, carbon tetrachloride, and chlorobenzene.

Relationship of Topography and Microbial Community from Paddy Soils in Gyeongnam Province (경남지역 논 토양 지형과 미생물 군집의 관계)

  • Lee, Young-Han;Ahn, Byung-Koo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1158-1163
    • /
    • 2011
  • The present study was aimed to evaluate the soil microbial communities by fatty acid methyl ester (FAME) method in paddy soils at 20 sites in Gyeongnam Province. The soil microbial biomass carbon content of fan and valley $1,266mg\;kg^{-1}$ was higher than alluvial plain $578mg\;kg^{-1}$ (p<0.05). In addition, The dehydrogenase activity of fan and valley $204{\mu}g\;TPF\;g^{-1}\;24h^{-1}$ was higher than alluvial plain $93{\mu}g\;TPF\;g^{-1}\;24h^{-1}$ (p<0.05). The communities of total bacteria and Gram-negative bacteria in the fan and valley paddy soils were significantly higher than those in the alluvial plain paddy soils (p<0.05). Total bacteria communities should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the fan and valley and alluvial plain in paddy soils.

Soil Chemical Property and Microbial Community under Organic and Conventional Radish Farming Systems (무 유기재배와 관행재배 토양의 화학성과 미생물 군집 비교)

  • Kang, Ho-Jun;Yang, Sung-Nyun;Song, Kwan-Cheol;Cho, Young-Yuen;Kim, Yu-Kyoung
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.4
    • /
    • pp.479-499
    • /
    • 2019
  • This study was conducted to investigate the responses of soil properties and microbial communities to different agricultural management and soil types, including organic management in Andisols (Org-A), organic management in Non-andisols (Org-NA), conventional management in Andisols (Con-A) and conventional management in Non-andisols (Con-NA) by using a pyrosequencing approach of 16S rRNA gene amplicon in Radish farms of volcanic ash soil in Jeju island. The results showed that agricultural management systems had a little influence on the soil chemical properties but had significant influence on microbial communities. In addition, soil types had significant influences on both the soil chemical properties and microbial communities. Organic farming increased the microbial density of bacteria and biomass C compared to conventional farming, regardless of soil types. Additionally, Org-NA had the highest dehydrogenase activity among treatments, whereas no difference was found between Org-A, Con-A and Con-NA and had the highest species richness (Chao 1) and diversity (Phyrogenetic diversity). Particularly, Chao 1 and Phyrogenetic diversity were increased in organic plots by 12% and 20%, compared with conventional plots, respectively. Also, regardless of agricultural management and soil types, Proteobacteria was the most abundant bacterial phylum, accounting for 21.9-25.9% of the bacterial 16S rRNAs. The relative abundance of putative copiotroph such as Firmicutes was highest in Org-NA plot by 21.0%, as follows Con-NA (13.1%), Con-A (6.7%) and Org-A (5.1%.), respectively and those of putative oligotrophs such as Acidobacteria and Planctomycetes were higher in Con-A than those in the other plots. Furthermore, LEfSe indicated that organic system enhanced the abundance of Fumicutes, while conventional system increased the abundance of Acidobacteria, especially in Non-andisols. Correlation analysis showed that total organic carbon (TOC) and nutrient levels (e.g. available P and exchangeable K) were significantly correlated to the structure of the microbial community and microbial activity. Overall, our results showed that the continuous organic farming systems without chemical materials, as well as the soil types made by long-term environmental factors might influence on soil properties and increase microbial abundances and diversity.

Contents of Soil Microbial Phospholipid Fatty Acids as Affected by Continuous Cropping of Pepper under Upland (노지 고추 연작 토양의 미생물 인지질 지방산 함량)

  • Hwang, Jae-Moon;Park, Kee-Choon;Kim, Su-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.1012-1017
    • /
    • 2010
  • This study was carried out to investigate the effect of continuous cropping of pepper on soil microbial phospholipid fatty acids (PLFAs) under upland applied without any pesticides and chemical herbicides from 2000 to 2009. Microbial PLFAs were analysed from soils sampled in 2009. Soil microbial diversities showed PLFAs of monoplanting of pepper were distinct from those of monoplanting of garlic and interplanting of garlic and pepper by principle component 2 (PC2). Furthermore, soil microbial activity of monoplanting of pepper significantly decreased PLFAs representing as VAM-fungi, whereas it significantly increased in actinomycetes and saturated/monounsaturated PLFAs' ratio. The results drove continuous cropping of pepper would vary the microbial community and their specific activity. Soil microbial activities in continuous cropping system would depend on crop root systems.

Effect of Different Fertilization Management Practices on Soil Microbial Activities and Community Structure in Volcanic Ash Citrus Orchard Soil (화산회토 감귤원 토양의 시비관리가 토양미생물활성 및 군집구조에 미치는 영향)

  • Joa, Jae-Ho;Han, Seung-Gap;Won, Hang-Yeon;Lim, Han-Cheol;Hyun, Hae-Nam;Suh, Jang-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.222-229
    • /
    • 2009
  • This study was performed to evaluate effect of different fertilization management practices on soil microbial activities and community structure using soil enzyme activities and PLFA contents in volcanic ash citrus orchard soil. Six experiment plots have differently managed based on the recommended application rate(NPK) of chemical fertilizer and compost for 13 years. Experiment plots were composed of no-fertilization(control), compost only, half amount of NPK with compost (1/2NPK+COM), NPK, NPK with compost(NPK+COM), and 3 times amount of NPK(3NPK). Soil samples collected in early March, May, July, and September 2007. Urease activity was high at NPK+COM in March, May, and September. It was higher in NPK+COM than in NPK. Urease activity decreased according to the order NPK>compost>control in March and May; compost>NPK>control in July and September. Dehydrogenase activity was significantly higher in 1/2NPK+COM($4.3ug\;TPF\;g^{-1}\;24h^{-1}$) than in control($2.4ug\;TPF\;g^{-1}\;24h^{-1}$), May. $\beta$-glucosidase activity was significantly higher in NPK and 1/2NPK+COM than in control, May. In March, Total PLFA contents were higher in NPK+COM($349.2n\;mol\;g^{-1}$) than in 3NPK($228.5n\;mol\;g^{-1}$). And that were higher in 1/2NPK+COM($237.8n\;mol\;g^{-1}$) than in 3NPK($133.1n\;mol\;g^{-1}$), May. Distribution ratio of soil microbial groups by PLFA biomaker were not significantly difference in between seasonal and treatments. Principal component analysis by PLFA profiles showed that microbial community in compost and 3NPK plot were different compared with other treatments in March. But Differences in compost and 3NPK plot were not found in May. Our result showed that the change of microbial community structure affected by fertilization effect and seasonable variation.