Browse > Article

Culture-Independent Methods of Microbial Community Structure Analysis and Microbial Diversity in Contaminated Groundwater with Major Pollutants  

Kim Jai-Soo (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Journal of Soil and Groundwater Environment / v.11, no.3, 2006 , pp. 66-77 More about this Journal
Abstract
This review inquired the recently applied molecular biological and biochemical methods analyzing the microbial community structure of groundwater and, as a result, summarized the functional or taxonomic groups of active microorganisms with major contaminants in groundwater. The development of gene amplification through PCR has been possible to figure out microbial population and identification. Active microbial community structures have been analyzed using a variety of fingerprinting techniques such as DGGE, SSCP, RISA, and microarray and fatty acid analyses such as PLFA and FAME, and the activity of a specific strain has been examined using FISH. Also, this review included the dominant microflora in groundwater contaminated with fuel components such as n-alkanes, BTEX, MTBE, and ethanol and chlorinated compounds such as TCE, PCE, PCB, CE, carbon tetrachloride, and chlorobenzene.
Keywords
Culture-independent method; Microbial community structure; Groundwater; Pollutant; Fingerprinting technique;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bekins, B.A., Cozzarelli, I.M., Godsy, E.M., Warren, E., Essaid, H.I., and Tuccillo, M.E., 2001, Progression of natural attenuation processes at a crude oil spill site: II. Controls on spatial distribution of microbial populations, J. Contam. Hydrol., 53, 387-406
2 Bossio, D.A. and Scow, K.M., 1998, Impacts of carbon arid flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol., 35, 265-278   DOI
3 Cavalca, L., Della Amico, E., and Andreoni, V., 2004, Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes, Appl. Microbiol. Biotechnol., 64, 576-587   DOI
4 Cozzarelli, I.M., Bekins, B.A., Baedecker, M.J., Aiken, G.R., Eganhouse, R.P., and Tuccillo, M.E., 2001, Progression of natural attenuation processes at a crude-oil spill site: I. Geochemical evolution of the plume, J. Contam. Hydrol., 53, 369-385
5 Da Silva, M.L.B. and Alvarez, P.J.J., 2002, Effects of ethanol versus MTBE on benzene, toluene, ethylbenzene, and xylene natural attenuation in aquifer columns, J. Environ. Eng., 128(9), 862-867   DOI   ScienceOn
6 Devlin, J.F., Katie, D., and Barker, J.F., 2004, In situ sequenced bioremediation of mixed contaminants in groundwater, J. Contam. Hydrol., 69, 233-261   DOI   ScienceOn
7 Duba, A.G., Jackson, K.J., Jovanovich, M.C., Knapp, R.B., and Taylor, R.T., 1996, TCE remediation using in situ, resting-state bioaugrnentation, Environ. Sci. Technol., 30, 1982-1989   DOI   ScienceOn
8 Eyers, L., George, I., Schuler, L., Stenuit, B., Agathos, S.N., and Fantroussi, S.E., 2004, Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics, Appl. Microbiol. Biotechnol., 66, 123-130   DOI
9 Fang, J., and Barcelona, M.J., 1998, Biogeochemical evidence for microbial community change in a jet fuel hydrocarbon contaminated aquifer, Org. Geochem., 29, 899-907   DOI   ScienceOn
10 Feris, K.P., Hristova, K., Grebreyesus, B., Mackay, D., and Scow, K.M., 2004, A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community, Microb. Ecol., 48, 589-600   DOI
11 Haack, S.K., Fogarty, L.R., West, T.G., AIm, E.W., McGuire, J.T., Long, D.T., Hyndman, D.W., and Forney, L.J., 2004, Spatial and temporal changes in microbial community structure associated with rechargeinfluenced chemical gradients in a contaminated aquifer, Environ. Microbiol., 6, 438-448   DOI   ScienceOn
12 Hubbard, C.E., Barker, J.P., O'Hannesin, S.F., Vandegriendt, M., and Gillham, R., 1994, Transport and fate of dissolved methanol, ethyltertiary-butyl-ether, and monoaromatic hydrocarbons in a shallow sand aquifer, American Petroleum Institute, Health & Environmental Sciences Department, Washington, DC, p.226
13 Kikuchi, T., Iwasaki, K., Nishihara, H., Takamura, Y., and Yagi, O.,2002, Quantitative and rapid detection of the trichloroethylenedegrading bacterium Methylocystis sp. M in groundwater by real-time PCR, Appl. Microbiol. Biotechnol., 59, 731-736   DOI   ScienceOn
14 Lendvay, J.M., Loffier, F.E., Dollhopf, M., Aiello, M.R., Daniels, G., Fathepure, B.Z., Gebhard, M., Heine, R., Helton, R., and Shi, J., et al., 2003, Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation, Environ. Sci. Technol., 37, 1422-1431   DOI   ScienceOn
15 Lovely, D.R., 1993, Dissimilatory metal reduction, Ann. Rev. Microbiol., 47, 263-290   DOI   ScienceOn
16 MacNaughton, S.J., Stephen, J.R., Venosa, A.D., Davis, G.A., Chang, Y.-J., and White, D.C., 1999, Microbial population changes during bioremediation of an experimental oil spill, Appl. Environ. Microbiol., 65, 3566-3574
17 Mormile, M.R., Liu, S., and Suflita, J.M., 1994, Anaerobic biodegradation of gasoline oxygenate: Extrapolation of information to multiple sites and redox conditions, Environ. Sci. Technol., 28, 1727-1732   DOI   ScienceOn
18 MacNaughton, S.J., Stephen, J.R., Venosa, A.D., Davis, G.A., Chang, Y.J., and White, D.C., 1999, Microbial population changes during bioremediation of an experimental oil spill, Appl. Environ. Microbiol., 65, 3566-3574
19 Major, D.W., McMaster, M.L., Cox, E.E., Edwards, E.A., Dworatzek, S.M., Hendrickson, E.R., Starr, M.G., Payne, J.A., and Buonamici, L.W. 2002, Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene, Environ. Sci. Technol., 36, 5106-5116   DOI   ScienceOn
20 Miller, G.S., Milliken, C.E., and Sowers, K.S., 2005, Reductive dechlorination of tetrachloroethene to trans-dichloroethene and cis-dichloroethene by PCB-dechlorinating bacterium DF-l, Environ. Scie. Technol., 30, 2631-2635
21 Pfiffuer, S., Palumbo, A., Gibson, T., Ringelberg, D., and McCarthy, J., 1997, Relating ground water and sediment chemistry to microbial characterization at a BTEX-contaminated site, Appl. Biochem. Biotechnol., 63, 775-788   DOI   ScienceOn
22 Purohit, H.J., Raje, D.Y., Kapley, A., Padmanabhan, P., and Singh, R.N., 2003, Genomics tools in environmental impact assessment, Environ. Sci. Technol., 37, 356A-363A   DOI   ScienceOn
23 Ranjard, L., Poly, F., and Nazaret. S., 2000, Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment, Res. Microbiol., 151, 167-177   DOI   ScienceOn
24 Suflita, J.M., and Mormile, M.R., 1993, The anaerobic biodegradation of known and potential gasoline oxygenates in the terrestrial subsurface, Environ. Sci. Technol., 27, 976-978   DOI   ScienceOn
25 Rhee, S.K., Liu, X.D., Wu, L.Y., Chong, S.C., Wan, X.F., and Zhou, J.Z., 2004, Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50mer oligonucleotide microarrays, Appl. Environ. Microbiol., 70, 4303-4317   DOI   ScienceOn
26 Ruiz-Aguilar, G.M.L, Fernandez-Sanchez, J.M., Kane, S.R, Kim, D., and Alvarez, P.J., 2002, Effect of ethanol and methyltert-butyl ether on monoaromatic hydrocarbon biodegradation: response variability for different aquifer materials under various electron-accepting conditions, Environ. Toxicol. Chem., 21, 2631-2639   DOI
27 Smith, A.E., Hristova, K., Wood, I., Mackay, D.M., Lory, E., Lorenzana, D., and Scow, K.M., 2005, Comparison of biostimulation versus bioaugmentation with bacterial strain PMl for treatment of groundwater contaminated with bethyl tertiary butyl ether (MTBE), Environ. Health Perspect., 113, 1-9   DOI   ScienceOn
28 Von Keitz, V., Schramm, A., Altendorf, K., and Lipski, A., 1999, Characterization of microbial communities of biofilters by phospholipid fatty acid analysis and rRNA targeted oligonucleotide probes, Syst. Appl. Microbiol., 22, 626-634   DOI   ScienceOn
29 Sunnucks, P. and Wilson, A.C.C., Zenger, L.B.K., French, J., and Taylor, A.C., 2000, SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism In evolutionary biology and molecular ecology, Mol. Ecol., 9, 1699-1710   DOI
30 Dybas, M.J., Hyndman, D.W., Heine, R., Tiedje, J., Linning, K., Wiggert, D., Voice, T., Zhao, X., Dybas, L., and Criddle, C.S., 2002, Development, operation, and long-term performance of a full-scale biocurtain utilizing bioaugmentation, Environ. Sci. Technol., 36, 3635-3644   DOI   ScienceOn
31 Stephen, J.R., Chang, Y.-J., Gan, Y.D., Peacock, A., Pfiffner, S.M., Barcelona, M.J., White, D.C., and MacNaughton, S.J., 1999, Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)-based approach, Environ. Microbiol., 1, 231-241   DOI   ScienceOn
32 Amann, R.I., Ludwig, W., and Schleifer, K.-H., 1995, Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 59, 143-169
33 Aulenta, F., Rossetti, S., Majone, M., and Tandoi, V., 2004, Detection and quantitative estimation of Dehalococcoieds spp. in a dechlorinating bioreactor by a combination of fluorescent in situ hybridization (FISH) and kinetic analysis, Appl. Microbiol. Biotechnol., 64, 206-212   DOI
34 Smidt, H., and de Vos, W.M., 2004, Anaerobic microbial dehalogenation, Annu. Rev. Microbiol., 58, 43-73   DOI   ScienceOn
35 Felske A. and Akkermans A.D.L., 1998, Spatial homogeneity of abundant bacterial 16S rRNA molecules in Grassland soils, Microb. Ecol., 36, 31-36   DOI
36 Townsend, G.T., Prince, R.C., and Suflita, J.M., 2003, Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer, Environ. Sci. Technol., 37, 5213-5218   DOI   ScienceOn
37 Yeh, C.K. and Novak, J.T., 1994, Anaerobic biodegradation of gasoline oxygenates in soils, Water Environ Res., 66, 744-752   DOI
38 Radajewski, S., Ineson, P., Parekh, N.R., and Murrell, J.C., 2000, Stable-isotope probing as a tool in microbial ecology, Nature, 403, 646-649   DOI   ScienceOn
39 Lee, S. and Furhman, J.A., 1990, DNA hybridization to compare species composition of natural bacterioplankton assemblages, Appl. Environ. Microbiol., 56, 739-746
40 Boschker, H.T.S., Nold, S.C., Wellsbury, P., Bos, D., de Graaf, W., Pel, R., Parkes, R.J., and Cappenberg, T.E., 1998, Direct linking of microbial populations to speci'c biogeochemical processes by $^13C$-labeling of biomarkers, Nature, 392, 801-805
41 Glucksman, A.M., Skipper, H.D., Brigmon, R.L., and Domingo, J.W., 2000, Use of the MIDI-FAME technique to characterize groundwater communities, J. Appl. Microbiol., 88(4), 711-719   DOI   ScienceOn
42 Boschker, H.T.S., de Graaf, W., Koster, M., Meyer-Reil, L.-A., and Cappenberg, T.E., 2001. Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol. Ecol., 35, 97-103   DOI
43 Manefield, M., Whiteley, A.S., Griffiths, R.I., and Bailey, M.J., 2002, RNA stable isotope probing, a novel means of linking microbial community function to Phylogeny, Appl. Environ. Microbiol., 68, 5367-5373   DOI
44 Marsh, T.L., 1999, Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products, Curr. Opin. Microbiol., 2, 323-327   DOI   ScienceOn
45 Spence, M.J., Bottrell, S.H., Thornton, S.F., Richnow, H.H., and Spence, K.H., 2005, Hydrochemical and isotopic effects associated with petroleum fuel biodegradtion pathways in a chalk aquifer, J. Contam. Hydrol., 79, 67-88   DOI   ScienceOn
46 Huys, G., Kersters, I., Vancanneyt, M., Coopman, R., Janssen, P., and Kersters, K., 1995, Diversity of Aeromonas sp. in Flemish drinking water production plants as determined by gas-liquid chromatographic analysis of cellular fatty acid methyl esters (FAMEs), J. Appl. Bacteriol., 78(4), 445-455   DOI   ScienceOn
47 Ibekwe, A.M. and Fennedy, A.C., 1988, Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions, FEMS Microbial. Ecol., 26, 151-163
48 Koenigsberg, S., Sandefur, C., Mahaffey, W., Deshusses, M., and Fortin, N., 1999, Peroxygen mediated bioremediation of MTBE, In Situ Bioremediation of Petroleum Hydrocarbon and OtherOrganic Compounds, Vol. 3, Alleman, B.C., and Leeson, A., (eds.), Battelle Press, Columbus, OH, p. 3-18
49 Powers, S.E., Rice D., Dooher, B., and Alvarez, P.J.J., 2001, Will ethanol-blended gasoline affect groundwater quality? Using ethanol instead of MTBE as a asoline oxygenate could be less harmful to the environment, Environ. Sci. Technol., 35, 24A-30A   DOI
50 Rling, W.F.M., Van Breukelen, B.M., Braster, M., and Van Verseveld. H.W., 2000, Linking microbial community structure to pollution: Biolog-substrate utilization in and near a landfill leachate plume, Water Sci. Technol., 41, 47-53
51 Roling, W.F.M., van Breukelen, B.M., Braster, M., Lin, B., and van Verseveld, H.W., 2001, Relationships between microbial community structure and hydrochemistry in a landfill leachatepolluted aquifer, Appl. Environ. Microbiol., 67, 4619-4629   DOI
52 Salanitro, J.P., and Wisniewski, H.L., 1996, Observations on the Biodegradation and Bioremediation Potential of Methyl t-Butyl Ether, Proceedings of the 17th Annual Meeting of the Society of Environmental Toxicology and Chemistry, Washington, DC
53 Kleikemper, J., Schroth, M.H., Sigler, W.V., Schmucki, M., Bernasconi, S.M., and Zeyer, J., 2002, Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer, Appl. Environ. Microbiol., 68, 1516-1523   DOI
54 Essaid, H.I., Cozzarelli, I.M., Eganhouse, R.P., Herkelrath, W.N., Bekins, B.A., and Delin, G.N., 2003, Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site, J. Contam. Hydrol., 67, 269-299   DOI   ScienceOn
55 White, D.C., Flemming, C.A., Leung, K.T., and MacNaughton, S.J., 1998, In situmicrobial ecology for quantitative appraisal, monitoring, and risk assessment of pollution remediation in soils, the subsurface, the rhizosphere and in biofilms, J. Microbiol. Methods, 32, 93-105   DOI   ScienceOn
56 Deeb, R.A., Hu, H.-Y., Hanson, J.S., Scow, K.M., and Alvarez-Cohen, L., 2001, Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate, Environ. Sci. Technol., 35, 312-317   DOI   ScienceOn
57 Hunt, C.S., dos Santos Ferreira, R., Corseuil, H.X, and Alvarez, P.J.J., 1997, Effect of ethanol on aerobic BTX degradation, In Situ and On-site Bioremediation, Leeson A.L., and Alleman, B.C., (eds.), Battelle, Columbus, OH, p. 49-54
58 Ramsburg, C.A., Abriola, L.M., Pennell, K.D., Loffler, F.E., Gamache, M., Amos, B.K., and Petrovskis, E.A., 2004, Stimulated microbial reductive dechlorination following surfactant treatment at the Bachman road site, Environ. Sci. Technol., 38, 5902-5914   DOI   ScienceOn
59 Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., Christensen, J.B., Baun, A., Albrechtsen, H.-J., and Heron. G., 2001, Biochemistry of landfill leachate plumes, Appl. Geochem., 16, 695-718
60 Hadrys, H., Balick, M., and Schierwater, B., 1992, Applications of random amplified polymorphic DNA (RAPD) in molecular ecology, Mol. Ecol., 1, 55-63   DOI   ScienceOn
61 Madigan, M.T., Martinko, J.M., and Parker, J., Brock Biology of Microorganisms, Prentice Hall, Upper Saddle River, NJ (2000)
62 Nealson, K.H. and Saffarini. D., 1994, Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation, Ann. Rev. Microbiol., 48, 311-343   DOI   ScienceOn
63 Peacock, A.D., Chang, Y.J., Istok, J.D., Krumholz, L., Geyer, R., Kinsall, B., Watson, D., Sublette, K.L., and White, D.C., 2004, Utilization of microbial biofilms as monitors of bioremediation, Microb. Ecol., 47, 284-292
64 Muyzer, G., De Waal, E.C., and Uitterlinden, A.G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ Microbiol. 59, 695-700
65 Church, C.D., Tratnyek, P.J., Pankow, J.F., Landmeyer, J.E., Baehr, A.L., Thomas, M.A., and Schirmer, M., 1999, Effects of environmental conditions on MTBE degradation in model column aquifers, Proceedings of the Technical Meeting of the USGS Toxic Substances Hydrology Program, Vol. 3, Charleston, SC, p. 93-101
66 Dybas, M.J., Barcelona, M., Bezborodnikov, S., Davies, S., Forney, L., Heuer, H., Kawka, O., Mayotte, T., Sepu'lveda-Torres, L., Smalla, K., Sneathen, M., Tiedje, J., Voice, T., Wiggert, D.C., Witt, D.C., and Criddle, C.S., 1998, Pilot-scale evaluation of bioaugmentation for in-situ remediation of carbon tetrachloridecontaminated aquifer, Environ. Sci. Technol., 32, 3598-3611   DOI   ScienceOn
67 Klein, A., and Schnorr. M., 1984, Genome complexity of methanogenic bacteria, J. Bacteriol., 158(2), 628-631
68 Rooney-Varga, J.N., Anderson, R.T., Fraga, J.L., Ringelberg, D.B., and Lovley, D.R., 1999, Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer, Appl. Environ. Microbiol., 65, 3056-3063
69 Sedran, M.A., Pruden, A., Wilson, G.J., Suidan, M.T., and Venosa, A.D., 2002, Effect of BTEX on degradation of MTBE and TBA by mixed bacterial consortium, J. Environ. Eng., 128(9), 830-835   DOI   ScienceOn
70 Pelz, O., Tesar, M., Wittich, R.-M., Moore, E.R.B., Timmis, K.N., and Abraham, W.-R., 1999, Towards elucidation of microoial community metabolic pathways: unraveling the network of carbon sharing in a pollutant-degrading bacterial consortium by mmunocapture and isotopic ratio mass spectrometry, Environ. Microbiol., 1, 167-174   DOI
71 Widdel, F., and Hansen, T.A., 1991, The dissimilatory sulfateand sulfur-reducing bacteria, The Prokaryotes, 2nd edition, vol. I, Balows, A., Trper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H. (eds.), Springer-Verlag, New York. p. 583-624
72 Cavigelli, M.A., Robertson, G.P., and Klug, M.J., 1995, Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure, Plant Soil, 170, 99-113   DOI
73 Beeman, R.E. and Bleckmann, C.A., 2002, Sequential anaerobic-aerobic treatment of an aquifer contaminated by halogenated organics: field results, J. Contam. Hydrol., 57, 147-159   DOI   ScienceOn
74 Corseuil, H.X., Hunt, C.S., Ferreira dos Santos, R.C., and Alvarez, P.J.J., 1998, The influence of the gasoline oxygenate ethanol on aerobic and anaerobic BTX biodegradtion. Water Res., 33, 2065-2072
75 Eriksson, S., Ankner, T., Abrahamsson K., and Hallbeck. L., 2005, Propylphenols are metabolites in the anaerobic biodegradation of propylbenzene under iron-reducing conditions, Bioremediation, 16, 253-263
76 Hunkeler, D., Hohener, P., and Zeyer, J., 2002, Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer, J. Contam. Hydrol. 59, 231-245   DOI   ScienceOn
77 LaMontagne, M.G., Davenport, G.J., Hou, L.-H., and Dutta, S.K., 1998, Identification and analysis of PCB dechlorinating anaerobic enrichments by amplification: accuracy of community structure based on restriction analysis and partial sequencing of 16S rRNA genes, J. Appl. Microbiol., 84, 1156-1162   DOI   ScienceOn
78 Philippot, L., 2005, Tracking nitrate reducers and denitrifiers in the environment, Biochem. Soc. Trans., 33(1), 200-204   DOI   ScienceOn
79 Schmidt, L.M., Delfino, J,J., Preston, J.F. 3rd, and St Laurent, G. 3rd, 1999, Biodegradation of low aqueous concentration pentachlorophenol (PCP) contaminated groundwater, Chemosphere, 38(12), 2897-912   DOI   ScienceOn
80 Langworthy, D.E., Stapleton, R.D., Sayler, G.S., and Findlay, R.H., 1998, Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination, Appl. Environ. Microbiol., 64, 3422-3428
81 Wenderoth, D.F., Rosenbrock, P., Abraham, W.-R., Pieper, D.H., and Hofle, M.G., 2003, Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater, Microb. Ecol., 46, 161-176   DOI
82 Warren, E.B.B., Godsy, E., and Smith, V., 2004, Inhibition of acetoclastic methanogenesis in crude oil- and creosote-contaminated groundwater, Bioremediation J., 8, 1-11   DOI   ScienceOn
83 Junca, H. and Pieper, D.H., 2004, Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries, Environ. Microbiol., 6, 95-110   DOI   ScienceOn
84 Anderson, R.T. and Lovley, D.R., 1997, Ecology and biogeochemistry of in situ groundwater bioremediation, Adv. Microb. Ecol., 15,289-350
85 Wilson, R.D., MacKay, D.M., and Scow, K.M., 2002, In situ MTBE biodegradation supported by diffusive oxygen release, Environ. Sci. Technol., 36, 190-199   DOI   ScienceOn
86 Zang, H., Logan, B.E., Regan, J.M., Achenbach, L.A., and Bruns, M.A., 2005, Molecular assessment of inoculated and indigenous bacteria in biofilms from a pilot-scale perchloratereducing bioreactor, Microb. Ecol., 49, 388-398   DOI
87 Knittel, K., Boetius, A., Eilers, A.L.H., Lochte, K., and Linke. O.P.P., 2003, Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon), Geomicrobiol. J., 20, 269-294   DOI   ScienceOn
88 Shi, Y., Zwolinski, M.D., Schreiber, M.E., Bahr, J.M., Sewell, G.W., and Hickey, W.J., 1999, Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosm experiments, Appl. Environ. Microbiol., 65, 2143-2150