DOI QR코드

DOI QR Code

Soil Chemical Property and Microbial Community under Organic and Conventional Radish Farming Systems

무 유기재배와 관행재배 토양의 화학성과 미생물 군집 비교

  • 강호준 (제주특별자치도농업기술원 친환경연구과) ;
  • 양성년 (제주특별자치도농업기술원 친환경연구과) ;
  • 송관철 (제주특별자치도농업기술원 친환경연구과) ;
  • 조영윤 (제주특별자치도농업기술원 친환경연구과) ;
  • 김유경 (제주특별자치도농업기술원 친환경연구과)
  • Received : 2019.09.02
  • Accepted : 2019.11.25
  • Published : 2019.11.30

Abstract

This study was conducted to investigate the responses of soil properties and microbial communities to different agricultural management and soil types, including organic management in Andisols (Org-A), organic management in Non-andisols (Org-NA), conventional management in Andisols (Con-A) and conventional management in Non-andisols (Con-NA) by using a pyrosequencing approach of 16S rRNA gene amplicon in Radish farms of volcanic ash soil in Jeju island. The results showed that agricultural management systems had a little influence on the soil chemical properties but had significant influence on microbial communities. In addition, soil types had significant influences on both the soil chemical properties and microbial communities. Organic farming increased the microbial density of bacteria and biomass C compared to conventional farming, regardless of soil types. Additionally, Org-NA had the highest dehydrogenase activity among treatments, whereas no difference was found between Org-A, Con-A and Con-NA and had the highest species richness (Chao 1) and diversity (Phyrogenetic diversity). Particularly, Chao 1 and Phyrogenetic diversity were increased in organic plots by 12% and 20%, compared with conventional plots, respectively. Also, regardless of agricultural management and soil types, Proteobacteria was the most abundant bacterial phylum, accounting for 21.9-25.9% of the bacterial 16S rRNAs. The relative abundance of putative copiotroph such as Firmicutes was highest in Org-NA plot by 21.0%, as follows Con-NA (13.1%), Con-A (6.7%) and Org-A (5.1%.), respectively and those of putative oligotrophs such as Acidobacteria and Planctomycetes were higher in Con-A than those in the other plots. Furthermore, LEfSe indicated that organic system enhanced the abundance of Fumicutes, while conventional system increased the abundance of Acidobacteria, especially in Non-andisols. Correlation analysis showed that total organic carbon (TOC) and nutrient levels (e.g. available P and exchangeable K) were significantly correlated to the structure of the microbial community and microbial activity. Overall, our results showed that the continuous organic farming systems without chemical materials, as well as the soil types made by long-term environmental factors might influence on soil properties and increase microbial abundances and diversity.

본 연구는 제주지역 무 주산지에서 재배 방법(유기 vs. 관행)과 토양 종류(화산회토 vs. 비화산회토)에 따른 토양의 화학적 특성, 미생물 활성 그리고 미생물 군집 조성을 분석하고 요인간 연관성을 구명하기 위하여 수행하였다. 전반적으로 유기와 관행의 재배 방식에 따른 토양 화학성은 처리간 뚜렷한 경향을 보이지는 않았으나 토양 미생물체량, 효소 활성, 종 풍부도와 다양성 그리고 미생물 군집 분포 등은 유의한 차이를 보였다. 반면에 토양 종류에 따른 화학성과 미생물 군집 분포 등 미생물학적 특성은 뚜렷한 차이를 보였다. 특히 유기재배 토양에서 관행 대비 토양의 세균, 방선균 및 사상균 그리고 미생물체량이 증가하였으며, Org-NA 토양에서 탈수소효소 활성, 종 풍부도(Chao 1) 그리고 종 다양성(Phyrogenetic diversity) 지수가 가장 높았다. 무 재배 토양에 분포하고 있는 주요 세균 문은 Proteobacteria, Acidobacteria, Chloroflexi, Firmicutes 그리고 Actinobacteria 등 5종이었으며 재배 방법 및 토양 종류에 관계없이 Proteobacteria 문이 화산회토에서 25.9%, 비화산회토에서 21.9~24.9%로 가장 높은 분포를 보였다. 그리고 대체로 화산회토와 비화산회토 토양 종류별로 유사한 군집 조성을 보였으며, 화산회토에서는 재배 방법별 주요 문의 군집 조성은 큰 차이가 없었으나 비화산회토에서는 차이를 보였다. 특히, Firmicutes는 Org-NA 토양에서 21.0%, Acidobacteria는 Con-A에서 21.6%로 가장 높은 분포를 보였는데 대체로 화산회토와 관행재배 토양에서 높은 경향을 보였다. 또한 재배 방법 및 토양 종류별 미생물 군집을 대표하는 바이오마커를 찾기 위하여 LEfSe 분석을 실시한 결과, Firmicutes 문의 분포가 비화산회토와 유기재배 토양에서 유의하게 증가하였다. 그리고 토양 화학성 중에서 총유기탄소 함량, 유효인산 그리고 치환성칼륨 함량은 Firmicutes 등 주요 세균 문과 유의한 상관관계를 보였다.

Keywords

References

  1. Adams, J. 2011. Altitudinal, land use and substrate variation in determining soil prokaryotic community on Jeju Island, Korea. Research report of Seoul National University. http://www.ndsl.kr/ndsl/search/detail/report/
  2. Armalyte, J., J. Skerniskyte, E. Bakiene, R. Krasauskas, R. Siugzdinient, V. Kareiviene, S. Kerziene, I. Klimiene, and E. Suziedeliene. 2019. Microbial diversity and antimicrobial resistance profile in microbiota from soils of conventional and organic farming systems. Frontiers in Microbiol. 10(892).
  3. Bacon, C. W., E. R. Palencia, and D. M. Hinton. 2015. Abiotic and biotic plant stress tolerant and beneficial secondary metabolites produced by endophytic Bacillus species. Plant Micro. Sym.: 163-177.
  4. Beilen, N. V. 2016. Effects of conventional and organic agricultural techniques on soil ecology. The center for development and strategy. 2016(1).
  5. Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  6. Buckley, D. H., and T. M. Schmidt. 2003. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 5: 441-452. doi: 10.1046/j.1462-2920.2003.00404.x.
  7. Casida, L. E., D. A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. 98: 371-376. https://doi.org/10.1097/00010694-196412000-00004
  8. Chao, A. and T. J. Shen. 2003. Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample. Environmental and ecological statistics, 10(4): 429-443. doi: 10.1126/science.aac4255. Epub 2015 Nov 5.
  9. Chaudhry, V., A. Rehman, A. Mishra, P. S. Chauhan, and C. S. Nautiyal. 2012. Change in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 64: 450-460. doi: 10.1007/s00248-012-0025-y.
  10. Deenik, J. 2006. Nitrogen mineralization potential in important agricultural soils of Hawai. Soil Crop Manage. 15: 1-5.
  11. Gomiero, T., D. Pimentel, and M. G. Paoletti. 2011. Environmental impact of different agricultural management practices: Conventional vs. Organic agriculture. Crit. Rev. Plant. Sci. 30: 95-124. https://doi.org/10.1080/07352689.2011.554355
  12. Joa, J. H., S. G. Han, H. Y. Won, H. C. Lim, H. N. Hyun, and J. S. Suh. 2009. Effect of different fertilization management practices on soil microbial activities and community structure in volcanic ash citrus orchard soil. Kor. J. of Soil Sci. Fer. 42(3): 222-229.
  13. Joa, J. H., K. H. Moon, K. S. Choi, S. C. Kim, and S. W. Koh. 2013. Soil dehydrogenase activity and microbial biomass C in croplands of Jeju Province. Kor. J. of Soil Sci. Fer. 46(2): 122-128. https://doi.org/10.7745/KJSSF.2013.46.2.122
  14. Hartmann, M., B. Frey, J. Mayer, P. Mader, and F. Widmer. 2015. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9: 1177-1194. doi: 10.1038/ismej.2014.210.
  15. Li, P., L. Chen, J. Zhang, J. Yin, and S. Huang. 2017. Bacterial community structure after long-tem organic and inorganic fertilization reveals important associations between soil nutrients and specific Taxa involved in nutrient transformations. Front Microbiol. 8: 187. doi: 10.3389/fmicb.2017.00187.
  16. Liao, J. L., Y. Liang, and D. Huang. 2018. Organic farming improves soil microbial abundance and diversity under greenhouse condition: A case study in Shanghai (Eastern China). Sustainability 10: 3825. doi: 10.3390/su10103825.
  17. Lori, M., S. Symnaczik, P. Mader, G. D. Deyn, and A. Gattinger. 2017. Organic farming enhances soil microbial abundance and activity-A meta-analysis and meta-regression. PLoS ONE 12(7): e0180442. https://doi.org/10.1371/journal.pone.0180442
  18. Lupatini, M., G. W. Korthals, M. de Hollander, T. K. S. Janssens, and E. Kuramae. 2017. Soil Microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol. 7: 2064. doi: 10.3389fmicb.2016.02064.
  19. Mader, P. A. Fliessbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil fertility and biodiversity in organic farming. Science. 296: 1694-1697. doi: 10.1126/science.1071148.
  20. Lamberti, P. W., A. P. Mahtey, A. Borras, M. Casas, and A. Plastino. 2008. On the metric character of the quantum Jensen-Shannon divergence. Phys. Res. A, 77(5): 052311.
  21. RDA. 2012. Standard analysis method of agricultural scientific technique (5th edition). Suwon-si, Korea.
  22. Schlesner, H. 1994. The development of media suitable for the microorganisms morphologically resembling Planctomyces spp., Pirellula spp., and other planctomycetales from various aquatic habitats using dilute media. Syst. Appl. Microbiol. 17: 135-145. https://doi.org/10.1016/S0723-2020(11)80042-1
  23. Segata, N., J. Izard, L. Waldron, D. Gevers, L. Miropolsky, W. S. Garrett, and C. Huttenhower. 2011. Metagenomic biomarker discovery and explanation. enome Biology 12:R60. http://genomebiology.com/2011/11/6/R60. https://doi.org/10.1186/gb-2011-12-6-r60
  24. Sivan, A., L. Corrales, N. Hubert, J. B. Williams, K. Aquino-Michaels, Z. M. Earley, F. W. Benyamin, Y. M. lei, B. Jabri, M. L. Alegre, E. B. Chang, and T. F. Gajewski. 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. Nov. 27; 350(6264): 1084-9.
  25. Song, K. C., S. B. Lee, D. B. Lee, B. K. Huyn, and Y. K. Sonn. 2014. Taxonomical classification of Korean soils. National Academy of Agricultural Science. Suwon-si, Korea.
  26. Sugiyama, A. and J. M. Vivanco. 2010. Pyrosequencing Assesment of soil microbial communities in organic and conventional potato farms. Plant Dis. 94: 1329-1335. https://doi.org/10.1094/PDIS-02-10-0090
  27. Tilman, D., K. G. Cassman, P. A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature. 418: 671-677. https://doi.org/10.1038/nature01014
  28. Ugolini, F. C. and R. A. Dahlgren. 2002. Soil development in volcanic ash. Glob. Environ. Res. 6(2): 69-81.
  29. Vance, E. D., P. C. Brookes, and D. S. Jenkinson. 1987. An extraction method for measuring soil micobial biomass C. Soil Biol. Biochem. 19: 703-707. https://doi.org/10.1016/0038-0717(87)90052-6
  30. Wang, S. Z. Li, and G. Fan. 2012. Soil quality and microbes in organic and conventional farming systems. African J. of Micro. Research. 6(24): 5077-5085.
  31. Wang, W., H. Wang, Y. Feng, L. Wang, X. Xiao, Y. Xi, X. Luo, R. Sun, X. Ye, Y. Huang, Z. Zhang, and Z. Cui. 2016. Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtzw River. Sci. Rep. 6: 35046. https://doi.org/10.1038/srep35046
  32. Wang, X., C. E. Sharp, G. M. Jones, S. E. Grasby, A. L. Brady, and P. F. Dunfield. 2015. Stable-Isotope probing identifies uncultured planctomycetes as primary degraders of a complex heteropolysaccharide in soil. Appl. Environ. Microb. 81: 4607-4615. https://doi.org/10.1128/AEM.00055-15
  33. Wepking, C., B. Avera, B. Badgley, J. E. Barrett, J. Franklin, K. F. Knowlton, P. P. Ray, C. Smitherman, and M. S. Strickland. 2017. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-respiration in soil microbial communities. Proc. Biol. Sci. 284, 20162233. doi: 10.1098/rspb.2016.2233.
  34. Whalen, J. K., C. Chang, G. W. Clayton, and P. Carefoot. 2000. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Am. J. 64: 962-966. https://doi.org/10.2136/sssaj2000.643962x
  35. Wieczorek, A., S. Hetz, and S. Kolb. 2014. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries. Biogeosciences. 11: 3339-3352. https://doi.org/10.5194/bg-11-3339-2014
  36. Xiong, W., Z. Li, H. Liu, C. Xue, R. Zhang, H. Wu, R. Li, and Q. Shen. 2015. The effect of long-term continuous cropping of Black Pepper on soil bacterial communities as determined by 454 pyrosequencing. PLoS ONE. 10. e0136946. https://doi.org/10.1371/journal.pone.0136946