Browse > Article
http://dx.doi.org/10.7745/KJSSF.2011.44.6.1158

Relationship of Topography and Microbial Community from Paddy Soils in Gyeongnam Province  

Lee, Young-Han (Gyeongsangnam-do Agricultural Research and Extension Services)
Ahn, Byung-Koo (Jeollabuk-do Agricultural Research and Extension Services)
Sonn, Yeon-Kyu (National Academy of Agricultural Science, RDA)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.44, no.6, 2011 , pp. 1158-1163 More about this Journal
Abstract
The present study was aimed to evaluate the soil microbial communities by fatty acid methyl ester (FAME) method in paddy soils at 20 sites in Gyeongnam Province. The soil microbial biomass carbon content of fan and valley $1,266mg\;kg^{-1}$ was higher than alluvial plain $578mg\;kg^{-1}$ (p<0.05). In addition, The dehydrogenase activity of fan and valley $204{\mu}g\;TPF\;g^{-1}\;24h^{-1}$ was higher than alluvial plain $93{\mu}g\;TPF\;g^{-1}\;24h^{-1}$ (p<0.05). The communities of total bacteria and Gram-negative bacteria in the fan and valley paddy soils were significantly higher than those in the alluvial plain paddy soils (p<0.05). Total bacteria communities should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the fan and valley and alluvial plain in paddy soils.
Keywords
Paddy soil; Microbial community; Soil topography; FAME;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Balser, T., K.K. Treseder, and M. Ekenler. 2005. Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol. Biochem. 37:601-604.   DOI   ScienceOn
2 Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278.   DOI   ScienceOn
3 Bradleya, K., A. Rhae, R.A. Drijberb, and J. Knopsc. 2006. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 38:1583-1595.   DOI   ScienceOn
4 Frostegard, A., A. Tunlid, and E. Baath. 1993. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 59:3605-3617.
5 Grogan, D.W. and J.E. Cronan. 1997. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 61:429-441.
6 Guckert, J.B., M.A. Hood, and D.C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in cis/trans ratio and proportions of cyclopropyl fatty acid. Appl. Environ. Microbial. 52:794-801.
7 Hamel, C., K. Hanson, F. Selles, A.F. Cruz, R. Lemke, B. McConkey, and R. Zentner. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38:2104-2116.   DOI   ScienceOn
8 Kieft, T.L., E. Wilch, K. O'connor, D.B. Ringelberg, and D.C. White. 1997. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl. Environ. Microbiol. 63:1531-1542.
9 Kim E.S. and Y.H. Lee. 2011. Response of soil microbial communities to applications of green manures in paddy at an early rice growing stage. Korean J. Soil Sci. Fert. 44:221-227.   DOI
10 Lee, Y.H. and H. Kim. 2011. Response of soil microbial communities to different farming systems for upland soybean cultivation. J. Korean Soc. Appl. Biol. Chem. 54(3):423-433.   DOI
11 Lee, Y.H. and H.D. Yun. 2011. Changes in microbial community of agricultural soils subjected to organic farming system in Korean paddy fields with no-till management. J. Korean Soc. Appl. Biol. Chem. 54(3):434-441.   DOI
12 Lee, Y.H. and S.K. Ha. 2011. Impacts of topography on microbial community from upland soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(3):485-491.   DOI
13 Lee, Y.H. and S.T. Lee. 2011. Comparison of microbial community of orchard soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(3):492-497.   DOI
14 Lee, Y.H. and Y.S. Zhang. 2011. Response of microbe to chemical properties from orchard soil in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(2):236-241.   DOI
15 Lee, Y.S., J.H. Kang, K.J. Choi, S.T. Lee, E.S. Kim, W.D. Song, and Y.H. Lee. 2011. Response of soil microbial communities to different cultivation systems in controlled horticultural land. Korean J. Soil Sci. Fert. 44(1):118-126.   DOI
16 Macalady, J.L., M.E. Fuller, and K.M. Scow. 1998. Effects of metam sodium fumigation on soil microbial activity and community structure. J. Environ. Qual. 27:54-63.
17 NIAST. 2010. Annual report of the monitoring project on agro-environmental quality in 2009. NIAST, RDA, Suwon, Korea.
18 Mechri, B., H. Chehab, F. Attia, F.B. Mariem, M. Braham, and M. Hammami. 2010. Olive mill wastewater effects on the microbial communities as studied in the field of olive trees by analysis of fatty acid signatures. Eur. J. Soil Bio. 146:312-318.
19 Min, S.G., S.S. Park, and Y.H. Lee. 2011. Comparison of soil microbial communities to different practice for strawberry cultivation in controlled horticultural land. Korean J. Soil Sci. Fert. 44(3):479-484.   DOI
20 NIAST. 2000. Methods of analysis of soil and plant. National Institute of Agricultural Science and Technology, Suwon, Korea.
21 Olsson, P.A., R. Francis, D.J. Read, and B. Soderstrom. 1998. Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil micro-organisms as estimated by measurement of specific fatty acids. Plant Soil 201:9-16.   DOI   ScienceOn
22 SAS Institute. 2006. SAS Version 9.1.3. SAS Inst., Cary, NC.
23 Schutter, M.E. and R.P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64:1659-1668.   DOI   ScienceOn
24 Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275-294.   DOI   ScienceOn