• Title/Summary/Keyword: 탈결합

Search Result 96, Processing Time 0.025 seconds

Historical Origins of Taiwan's Status-Differentiated Social Insurance Scheme (대만의 분절된 사회보험 체계의 역사적 기원: 노동보험과 공무원보험을 중심으로)

  • Wang, Hye Suk
    • Korean Journal of Social Welfare Studies
    • /
    • v.45 no.3
    • /
    • pp.151-178
    • /
    • 2014
  • Highly Differentiated and segmented social insurance scheme in Taiwan shows its salient dimension of stratification, which has been considered as a general feature of conservative welfare regime. However, compared to Western conservative welfare states, Taiwan's social insurance scheme shows a distinct feature. First, Taiwan's social insurance scheme has offered a full coverage for various benefits. Secondly, Labor Insurance and Government employees' Insurance reveal distinct features of stratification. Labor Insurance has developed a universalistic system based on status equality and cross-class solidarity of working classes while Government employees' Insurance includes a myriad of occupational- and status-based programs. This article aims to articulate the historical origin of Taiwan's unique social insurance scheme and explains it as an unintended result of state's political intervention and various interests of each insured groups, especially, politically, economically, and ethnically conflicting identities of government employees and working classes.

Crystal structure of α-acetolactate decarboxylase from Bacillus subtilis subspecies spizizenii (고초균 아종 spizizenii의 α-acetolactate decarboxylase 결정 구조)

  • Eom, Jiyoung;Oh, Han Byeol;Yoon, Sung-il
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • Acetoin is generated by numerous microorganisms using ${\alpha}$-acetolactate decarboxylase (ALDC) to prevent overacidification of cells and their environment and to store remaining energy. Because acetoin has been used as a safe flavor enhancer in food products, industries have been interested in biotechnological production of acetoin using ALDC. ALDC is a metal-dependent enzyme that produces acetoin from ${\alpha}$-acetolactate through decarboxylation reaction. Here, we report the crystal structure of ALDC from Bacillus subtilis subspecies spizizenii (bssALDC) at $1.7{\AA}$ resolution. bssALDC folds into a two-domain ${\alpha}/{\beta}$ structure where two ${\beta}$-sheets form a central core. bssALDC assembles into a dimer through central hydrophobic interactions and peripheral hydrophilic interactions. bssALDC coordinates a zinc ion using three histidine residues and three water molecules. Based on comparative analyses of ALDC structures and sequences, we propose that the active site of bssALDC includes the zinc ion and its neighboring bssALDC residues.

"The Korean Genome for Asian Health": A Commercialization Strategy of the Korean Genome Projects ("아시아인 건강을 위한 한국인 게놈" : 한국인 유전체 프로젝트의 상업화 전략)

  • HYUN, Jaehwan
    • Journal of Science and Technology Studies
    • /
    • v.19 no.2
    • /
    • pp.117-167
    • /
    • 2019
  • Since a working draft sequence mapping of the human genome was published in 2001, the variety of the national genome projects has been initiated in South Korea. One of the rationales for such projects is that "the Korean genome database" will be used for "the personalized medicine for Asians." By focusing on the development of human genomics in this country, this paper examines how the discourse has emerged as a strategy for commercializing the national genome. The paper argues that Korean genomicists developed this strategy under the influences of the global "genome sovereignty" policy and local "Asian regionalist" science policy. It will contribute to the literature of the "Asian" race and genomics by shedding new light on the historical formation of the Pan-Asian Single Nucleotide Polymorphism(PASNP) consortium beyond the Singaporean experience.

A Survey of Decentralized Finance(DeFi) based on Blockchain

  • Kim, Junsang;Kim, Seyong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.59-67
    • /
    • 2021
  • Blockchain technology began in 2008 when an unidentified person named Satoshi Nakamoto proposed a cryptocurrency called Bitcoin. Satoshi Nakamoto had distrust of the existing financial system and wanted to implement a financial system that is robust against hacking or mannipulation without a middleman such as a bank through blockchain technology. Satoshi proposed a blockchain as a technology to prevent the creation of the bitcoin and forging of transactions, and through this, the functions of issuance, transaction, and verification of currency were implemented. Since then, Ethereum, a cryptocurrency that can implement the smart contract on the blockchain, has been developed, allowing financial products that require complex contracts such as deposits, loans, insurance, and derivatives to be brought into the area of cryptocurrency. In addition, it is expanding the possibility of substituting products provided by financial institutions through combination with real assets. These applications are defined as Decentralized Finance (DeFi). This paper was prepared to understand the overall technical understanding of DeFi and to introduce the services currently in operation. First, the technologies and ecosystems that implement the overall DeFi are explained, and then the representative DeFi services are categorized by feature and described.

Enhanced Environmental Stability of Graphene Field-Effect Transistors through Interface Control (계면 제어를 통한 그래핀 기반 전계효과 트랜지스터의 환경 안정성 향상)

  • Seong, Jun Ho;Lee, Dong Hwa;Lee, Eunho
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.75-79
    • /
    • 2022
  • Graphene is a two-dimensional carbon allotrope composed of honeycomb sp2 hybrid orbital bonds. It shows excellent electrical and mechanical properties and has been spotlighted as a core material for next-generation electronic devices. However, it exhibits low environmental stability due to the easy penetration or adsorption of external impurities from the formation of an unstable interface between the materials in the electronic devices. Therefore, this work aims to improve and investigate the low environmental stability of graphene-based field-effect transistors through direct growth using solid hydrocarbons as a precursor of graphene. Graphene synthesized from direct growth shows high electrical stability through reduction of change in charge mobility and Dirac voltage. Through this, a new approach to utilize graphene as a core material for next-generation electronic devices is presented.

A Study on the Factors of the Income Maintenance Influencing Elderly Poverty : Focusing on Comparing Working Status Groups (노후소득보장제도의 노인 빈곤 영향요인에 관한 연구: 근로여부별 비교)

  • Kwon, Hyeok Chang;Chang, Sung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.9
    • /
    • pp.689-699
    • /
    • 2022
  • The purpose of this study is to analyze the factors influencing poverty in the elderly under the income maintenance, focusing on labor. Accordingly, a Panel Logit Analysis was conducted based on the 7th to 16th data of the Korean Welfare Panel. The analysis results are as follows. First, even if demographic, economic, and health variables affecting elderly poverty are controlled, National Pension and Special Occupational Pension among the income maintenance are negatively related to elderly poverty. On the other hand, it was found that the amount of Basic Pension and National Basic Living Security were positively related to poverty for the elderly. Second, it was found that if the elderly receiving national basic living security work, there is a high possibility of poverty. This raises the need to restructuring the Basic Pension, and suggests that it is necessary to combine the National Basic Living Security with the elderly job policy. Finally, in order to alleviate overall elderly poverty, it is suggested to rebuild the multi-pillar old-age income security system, including Basic Pension and Retirement Pension.

The Types and Characteristics of Transformational Design Ideas in Contemporary Military Look (현대 밀리터리 룩에 나타난 전환적 디자인 발상 유형과 특성)

  • XUEJIAO, JIA;Kim, Hyun-joo;Youn, Ji-young
    • Journal of Digital Convergence
    • /
    • v.20 no.1
    • /
    • pp.265-275
    • /
    • 2022
  • This study analyzes and categorizes the cases of military look's transitional design ideas in recent women's fashion collections, and derives characteristics. The research method is a theoretical review of military look and an analysis of fashion collection cases. The research results were classified into a total of six transformational design ideas. As a structural change in design, it is a decentralized type, a type of expansion and reduction, a change in the entire material, or a transition of some materials, and finally a type according to heterogeneous harmony and organic combination corresponding to styling. Finally, a total of three characteristics are the reconstruction of structural elements, the expansion of the metric of the second mix match, and the emotional fusion of styling. I hope that the study of the transformative type of idea of the new military look will be the driving force for creative design development and will be a basic study that can read the current status and changes of the times throughout fashion design.

Research and Development Trends of Ion Exchange Membrane Processes (이온교환막 공정의 연구개발 전망)

  • Lee, Hong-Joo;Choi, Jaehwan;Chang, Bong-Jun;Kim, Jeong-Hoon
    • Prospectives of Industrial Chemistry
    • /
    • v.14 no.6
    • /
    • pp.21-28
    • /
    • 2011
  • 이온교환막을 이용한 전기적 탈염기술은 막모듈 내에 양이온교환막과 음이온교환막을 교대로 장착시키고 모듈의 양단 전극에 전압을 적용함으로써 물속에 용존되어 있는 양이온과 음이온들을 전기의 힘을 이용하여 선택적으로 투과시키는 원리를 기반으로 하는 청정공정 기술이다. 이온교환막 공정은 전통적으로 산/알칼리의 생산, 산업폐수의 중금속의 제거, 해수의 담수화, 반도체 산업의 초순수의 제조, 해수에서 식염의 제조, 발효산업의 유기산 및 아미노산의 회수 등 다양한 산업분야에서 응용되어 왔다. 최근에는 이러한 기존의 응용분야에서 벗어나 새롭게 응용분야가 넓어지고 있다. 이온교환막과 다공성 탄소전극을 결합한 막축전식 해수담수화기술, 해수와 담수의 염도차를 이용한 역전기투석식 해수발전 등의 새로운 선택분리기능 및 응용분야를 가진 이온교환막의 개발 및 공정에 관한 연구가 활발히 이루어지고 있다. 그러나 국내에서는 이온교환막이 아직 상용화되지 않고 있어 이온교환막을 이용한 응용연구가 활발하게 진행되지 못하고 있어 그 개발이 시급하다. 본 논문에서는 먼저 이온교환막을 이용한 전기투석식 탈염기술, 물분해 전기투석, 전기탈이온 공정에 관한 동향을 조사하였다. 아울러 미래의 이온교환막의 응용기술인 해수담수화기술로서 역삼투법과 경쟁하여 에너지를 낮게 소모할 것으로 예상되는 분리막을 이용한 막축전식 탈염기술과 무한한 신재생에너지원인 해수와 담수를 이용한 역전기투석 해수발전기술에 대해 기술의 원리들과 최근의 연구동향 등을 정리하였다.

Quantum Chemical Calculations of the Effect of Si-O Bond Length on X-ray Raman Scattering Features for MgSiO3 Perovskite (양자화학계산을 이용한 Si-O 결합길이가 MgSiO3 페로브스카이트의 X-선 Raman 산란 스펙트럼에 미치는 영향에 대한 연구)

  • Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • Probing the electronic structures of crystalline Mg-silicates at high pressure is essential for understanding the various macroscopic properties of mantle materials in Earth's interior. Quantum chemical calculations based on the density functional theory are used to explore the atomic configuration and electronic structures of Earth materials at high pressure. Here, we calculate the partial density of states (PDOS) and O K-edge energy-loss near-edge structure (ELNES) spectra for $MgSiO_3$ perovskite at 25 GPa and 120 GPa using the WIEN2k program based on the full-potential linearized projected augmented wave (FP-LPAW) method. The calculated PDOS and O K-edge ELNES spectra for $MgSiO_3$ Pv show significant pressure-induced changes in their characteristic spectral features and relative peak intensity. These changes in spectral features of $MgSiO_3$ Pv indicate that the pressure-induced changes in local atomic configuration around O atoms such as Si-O, O-O, and Mg-O length can induce the significant changes on the local electronic structures around O atoms. The result also indicates that the significant changes in O K-edge features can results from the topological densification at constant Si coordination number. This study can provide a unique opportunity to understand the atomistic origins of pressure-induced changes in local electronic structures of crystalline and amorphous $MgSiO_3$ at high pressure more systematically.

Biomodification of Ethanol Organolsolv Lignin by Abortiporus biennis and Its Structural Change by Addition of Reducing Agent (Abortiporus biennis에 의한 유기용매 리그닌의 생물학적 변환과 환원제 첨가에 따른 구조 변화)

  • Hong, Chang-Young;Park, Se-Yeong;Kim, Seon-Hong;Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.124-134
    • /
    • 2016
  • The main goal of this study was to investigate biomodification mechanism of lignin by white rot fungus, Abortiporus biennis, and to depolymerize ethanol organosolv lignin for industrial application. In nitrogen-limited culture, A. biennis polymerized mainly lignin showing a rapid increase of molecular weight and structural changes depending on incubation days. At the initial incubation days, cleavage of ether bonds increased phenolic OH content, while the results were contrary in of the later part of the culture. Based on these results, ascorbic acid as a reducing agent was used to induce depolymerization of lignin during cultivation with white rot fungus. As a result, the degree of increase of average molecular weight of lignin was significantly declined when compared with those of the ascorbic acid free-experiment, although the molecular weight of fungus treated sample slightly increased than that of control. Furthermore, lignin derived oligomers in culture medium were depolymerized with the addition of ascorbic acid, showing that the average molecular weight was 381 Da, and phenolic OH content was 38.63%. These depolymerized lignin oligomers were considered to be applicable for industrial utilization of lignin. In conclusion, A. biennis led to the polymerization of lignin during biomodification period. The addition of ascorbic acid had a positive effect on the depolymerization and increase of phenolic OH content of lignin oligomers in medium.