Browse > Article
http://dx.doi.org/10.7845/kjm.2019.9005

Crystal structure of α-acetolactate decarboxylase from Bacillus subtilis subspecies spizizenii  

Eom, Jiyoung (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University)
Oh, Han Byeol (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University)
Yoon, Sung-il (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University)
Publication Information
Korean Journal of Microbiology / v.55, no.1, 2019 , pp. 9-16 More about this Journal
Abstract
Acetoin is generated by numerous microorganisms using ${\alpha}$-acetolactate decarboxylase (ALDC) to prevent overacidification of cells and their environment and to store remaining energy. Because acetoin has been used as a safe flavor enhancer in food products, industries have been interested in biotechnological production of acetoin using ALDC. ALDC is a metal-dependent enzyme that produces acetoin from ${\alpha}$-acetolactate through decarboxylation reaction. Here, we report the crystal structure of ALDC from Bacillus subtilis subspecies spizizenii (bssALDC) at $1.7{\AA}$ resolution. bssALDC folds into a two-domain ${\alpha}/{\beta}$ structure where two ${\beta}$-sheets form a central core. bssALDC assembles into a dimer through central hydrophobic interactions and peripheral hydrophilic interactions. bssALDC coordinates a zinc ion using three histidine residues and three water molecules. Based on comparative analyses of ALDC structures and sequences, we propose that the active site of bssALDC includes the zinc ion and its neighboring bssALDC residues.
Keywords
Bacillus subtilis; acetoin; ${\alpha}$-acetolactate decarboxylase; structure; zinc;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tsau JL, Guffanti AA, and Montville TJ. 1992. Conversion of pyruvate to acetoin helps to maintain pH homeostasis in Lactobacillus plantarum. Appl. Environ. Microbiol. 58, 891-894.   DOI
2 Wu W, Zhao Q, Che S, Jia H, Liang H, Zhang H, Liu R, Zhang Q, and Bartlam M. 2019. Structural characterization of an acetolactate decarboxylase from Klebsiella pneumoniae. Biochem. Biophys. Res. Commun. 509, 154-160.   DOI
3 Xiao Z and Lu JR. 2014. Generation of acetoin and its derivatives in foods. J. Agric. Food Chem. 62, 6487-6497.   DOI
4 Xiao Z, Ma C, Xu P, and Lu JR. 2009. Acetoin catabolism and acetylbutanediol formation by Bacillus pumilus in a chemically defined medium. PLoS One 4, e5627.   DOI
5 Xiao Z and Xu P. 2007. Acetoin metabolism in bacteria. Crit. Rev. Microbiol. 33, 127-140.   DOI
6 Shen X, Liu D, Liu J, Wang Y, Xu J, Yang Z, Guo T, Niu H, and Ying H. 2016. Enhanced production of butanol and acetoin by heterologous expression of an acetolactate decarboxylase in Clostridium acetobutylicum. Bioresour. Technol. 216, 601-606.   DOI
7 Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, and Ben-Tal N. 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344-350.   DOI
8 Bae SJ, Kim S, and Hahn JS. 2016. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Sci. Rep. 6, 27667.   DOI
9 Bursac T, Gralnick JA, and Gescher J. 2017. Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnol. Bioeng. 114, 1283-1289.   DOI
10 Emsley P and Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132.   DOI
11 Forster AH, Beblawy S, Golitsch F, and Gescher J. 2017. Electrode-assisted acetoin production in a metabolically engineered Escherichia coli strain. Biotechnol. Biofuels 10, 65.   DOI
12 Levine M. 1916. On the significance of the voges-proskauer reaction. J. Bacteriol. 1, 153-164.   DOI
13 Halpern YS and Umbarger HE. 1959. Evidence for two distinct enzyme systems forming acetolactate in Aerobacter aerogenes. J. Biol. Chem. 234, 3067-3071.   DOI
14 Ji F, Li M, Feng Y, Wu S, Wang T, Pu Z, Wang J, Yang Y, Xue S, and Bao Y. 2018. Structural and enzymatic characterization of acetolactate decarboxylase from Bacillus subtilis. Appl. Microbiol. Biotechnol. 102, 6479-6491.   DOI
15 Jia X, Liu Y, and Han Y. 2017. A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate. Sci. Rep. 7, 4333.   DOI
16 Loken JP and Stormer FC. 1970. Acetolactate decarboxylase from Aerobacter aerogenes: purification and properties. Eur. J. Biochem. 14, 133-137.   DOI
17 Marlow VA, Rea D, Najmudin S, Wills M, and Fulop V. 2013. Structure and mechanism of acetolactate decarboxylase. ACS Chem. Biol. 8, 2339-2344.   DOI
18 Murshudov GN, Vagin AA, and Dodson EJ. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240-255.   DOI
19 Otwinowski Z and Minor W. 1997. Processing X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326.   DOI
20 Grundy FJ, Waters DA, Takova TY, and Henkin TM. 1993. Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis. Mol. Microbiol. 10, 259-271.   DOI
21 Park SC, Kwak YM, Song WS, Hong M, and Yoon SI. 2017. Structural basis of effector and operator recognition by the phenolic acid-responsive transcriptional regulator PadR. Nucleic Acids Res. 45, 13080-13093.   DOI