Browse > Article
http://dx.doi.org/10.9727/jmsk.2014.27.1.11

Quantum Chemical Calculations of the Effect of Si-O Bond Length on X-ray Raman Scattering Features for MgSiO3 Perovskite  

Yi, Yoo Soo (Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University)
Lee, Sung Keun (Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.27, no.1, 2014 , pp. 1-15 More about this Journal
Abstract
Probing the electronic structures of crystalline Mg-silicates at high pressure is essential for understanding the various macroscopic properties of mantle materials in Earth's interior. Quantum chemical calculations based on the density functional theory are used to explore the atomic configuration and electronic structures of Earth materials at high pressure. Here, we calculate the partial density of states (PDOS) and O K-edge energy-loss near-edge structure (ELNES) spectra for $MgSiO_3$ perovskite at 25 GPa and 120 GPa using the WIEN2k program based on the full-potential linearized projected augmented wave (FP-LPAW) method. The calculated PDOS and O K-edge ELNES spectra for $MgSiO_3$ Pv show significant pressure-induced changes in their characteristic spectral features and relative peak intensity. These changes in spectral features of $MgSiO_3$ Pv indicate that the pressure-induced changes in local atomic configuration around O atoms such as Si-O, O-O, and Mg-O length can induce the significant changes on the local electronic structures around O atoms. The result also indicates that the significant changes in O K-edge features can results from the topological densification at constant Si coordination number. This study can provide a unique opportunity to understand the atomistic origins of pressure-induced changes in local electronic structures of crystalline and amorphous $MgSiO_3$ at high pressure more systematically.
Keywords
$MgSiO_3$ perovskite; local electronic structure; O K-edge ELNES spectrum; PDOS; full-potential linearized augmented plane wave (FP-LAPW); WIEN2k;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Yi, Y. S. and Lee, S. K. (2010) Local Electronic Structures of SiO2 Polymorph Crystals: Insights from O K-edge Energy-Loss Near-Edge Spectro- scopy. J. Miner. Soc. Korea, 23, 403-411.
2 Yi, Y. S. and Lee, S. K. (2012) Pressure-induced changes in local electronic structures of $SiO_2$ and $MgSiO_3$ polymorphs: Insights from ab initio calculations of O K-edge energy-loss near-edge structure spectroscopy. Am. Miner., 97, 897-909.   DOI
3 Zhao, Y. and Truhlar, D. G. (2006) Density functional transfer states, and better performance on average than B3LYP for ground states. J. Phys. Chem. A, 110, 13126-13130.   DOI   ScienceOn
4 Mao, W. L., Mao, H. K., Sturhahn, W., Zhao, J. Y., Prakapenka, V. B., Meng, Y., Shu, J. F., Fei, Y. W., and Hemley, R. J. (2006) Iron-rich post-perovskite and the origin of ultralow-velocity zones. Science, 312, 564-565.   DOI   ScienceOn
5 Lee, S. K., Lin, J. F., Cai, Y. Q., Hiraoka, N., Eng, P. J., Okuchi, T., Mao, H. K., Meng, Y., Hu, M. Y., Chow, P., Shu, J. F., Li, B. S., Fukui, H., Lee, B. H., Kim, H. N., and Yoo, C. S. (2008) X-ray Raman scattering study of MgSiO3 glass at high pressure: Implication for triclustered $MgSiO_3$ melt in Earth's mantle. Proc. Natl. Acad. Sci. U.S.A., 105, 7925- 7929.   DOI   ScienceOn
6 Lin, J. F., Fukui, H., Prendergast, D., Okuchi, T., Cai, Y. Q., Hiraoka, N., Yoo, C. S., Trave, A., Eng, P., Hu, M. Y., and Chow, P. (2007) Electronic bonding transition in compressed SiO2 glass. Phys. Rev. B, 75.
7 Luitz, J., Maier, M., Hebert, C., Schattschneider, P., Blaha, P., Schwarz, K., and Jouffrey, B. (2001) Partial core hole screening in the Cu L3-edge. Eur. Phys. J. B, 21, 363-367.   DOI
8 Marx, D., Hutter, J. (2000) Ab initio Molecular Dynamics: Theory and Implementation. Mod. Methods and Algorithms of Quantum Chem., 1, 301-449.
9 McMillan, P. F. (2007) Theory and Practice Lattice Vibrations and Spectroscopy of Mantle Phases. Mineral Physics. G. D. Price, Elsevier. 6, 153-196.
10 Mizoguchi, T., Tanaka, I., Yoshiya, M., Oba, F., and Adachi, H. (1999) Theoretical calculation of oxygen K electron-energy-loss near-edge structures of Sidoped MgO. J. Phys.-Condes. Matter, 11, 5661-5670.   DOI   ScienceOn
11 Jorissen, K. and Rehr, J. J. (2010) Calculations of electron energy loss and x-ray absorption spectra in periodic systems without a supercell. Phys. Rev. B, 81, 245124.   DOI   ScienceOn
12 Hemley, Russell J., Mao, Ho-Kwang, and Cohen, Ronald E. (1998) High-pressure electronic and magnetic properties. Reviews in Mineralogy and Geochemistry. 37, 591-638.
13 Iitaka, T., Hirose, K., Kawamura, K., and Murakami, M. (2004) The elasticity of the $MgSiO_{3}$ post-perovskite phase in the Earth's lowermost mantle. Nature, 430, 442-445.   DOI   ScienceOn
14 Irifune, T. and Tsuchiya, T. (2007) Mineralogy of the Earth Phase Transitions and Mineralogy of the Lower Mantle. Mineral Physics. G. D. Price, Elsevier. 2, 33-62.
15 Kim, E. J. and Lee, S. K. (2011) Atomic structure of dissolved carbon in enstatite: Raman spectroscopy and quantum chemical calculations of NMR chemical shift. J. Miner. Soc. Korea, 24, 289-300.   과학기술학회마을   DOI   ScienceOn
16 Kohlstedt, D. L. (2007) Properties of Rocks and Minerals Constitutive Equations, Rheological Behavior, and Viscosity of Rocks. Mineral Physics. G. D. Price, Elsevier. 6, 389-436.
17 Anisimov, V. I., Aryasetiawan, F., and Lichtenstein, A. I. (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method. J. Phys.-Condes. Matter, 9, 767-808.   DOI   ScienceOn
18 Lee, B. H. and Lee, S. K. (2007) The effect of lattice topology on benzyl alcohol adsorption on kaolinite surfaces: Quantum chemical calculations of Mulliken charges and magenetic shielding tensor. J. Miner. Soc. Korea, 20, 313-325.
19 Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., and Luitz, J. (2001) WIEN2k (An augmented plane wave + local orbitals program for calculating crystal properties). Techn. Univ. Wien, Austria, from http://www.wien2k.at
20 Alfe, D. (2007) Theory and Practice The Ab Initio Treatment of High-Pressure and-Temperature Mineral Properties and Behavior. Mineral Physics. G. D. Price, Elsevier. 6, 359-387.
21 Becke, A. D. (1993) A New Mixing of Hartree-Fock and Local Density-Functional Theories. J. Chem. Phys., 98, 1372-1377.   DOI
22 Cococcioni, M. (2010) Accurate and Efficient Calculations on Strongly Correlated Minerals with the LDA plus U Method: Review and Perspectives. Theoretical and Computational Methods in Mineral Physics: Geophysical Applications. R. Wentzcovitch and L. Stixrude. Chantilly, Mineralogical Soc Amer. 71, 147-167.
23 de Groot, F. (2001) High resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev., 101, 1779-1808.   DOI   ScienceOn
24 Dingwell, D. B. (2007) Properties of Rocks and Minerals-Diffusion, Viscosity, and Flow of Melts. Treatise on Geophysics. S. Gerald. Amsterdam, Elsevier, 419-436.
25 Akins, J. A., Luo, S. N., Asimow, P. D., and Ahrens, T. J. (2004) Shock-induced melting of $MgSiO_3$ perovskite and implications for melts in Earth's lowermost mantle. Geophys. Res. Lett., 31, L14612.   DOI   ScienceOn
26 Fukui, H., Kanzaki, M., Hiraoka, N., and Cai, Y. Q. (2009) X-ray Raman scattering for structural investigation of silica/silicate minerals. Phys. Chem. Miner., 36, 171-181.   DOI   ScienceOn
27 Hebert, C. (2007) Practical aspects of running the WIEN2k code for electron spectroscopy. Micron, 38, 12-28.   DOI   ScienceOn
28 Hebert, C., Luitz, J. and Schattschneider, P. (2003) Improvement of energy loss near edge structure calculation using Wien2k. Micron, 34, 219-225.   DOI   ScienceOn
29 Rez, P., Alvarez, J. R., and Pickard, C. (1999) Calculation of near edge structure. Ultramicroscopy, 78, 175-183.   DOI
30 Schwarz, K. and Blaha, P. (2003) Solid state calculations using WIEN2k. 28, 259-273.   DOI   ScienceOn
31 Stixrude, L. (2007) Properties of Rocks and Minerals- Seismic Properties of Rocks and Minerals, and Structure of the Earth. Treatise on Geophysics. S. Gerald. Amsterdam, Elsevier, 7-32.
32 Schwarz, K., Blaha, P., and Madsen, G. K. H. (2002) Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun., 147, 71-76.   DOI
33 Shim, S. H. (2008) The postperovskite transition. Annu. Rev. Earth Planet. Sci., 36, 569-599.   DOI   ScienceOn
34 Singh, David J. and Nordstrom, Lars (2006) Planewaves, pseudopotentials, and the LAPW method. Springer, New York, 134p.
35 Stixrude, L. (2007) Properties of Rocks and Minerals Seismic Properties of Rocks and Minerals, and Structure of the Earth. Mineral Physics. G. D. Price, Elsevier. 2, 7-31.
36 Stixrude, L. and Karki, B. (2005) Structure and freezing of $MgSiO_3$ liquid in Earth's lower mantle. Science, 310, 297-299.   DOI
37 Sugahara, M., Yoshiasa, A., Komatsu, Y., Yamanaka, T., Bolfan-Casanova, N., Nakatsuka, A., Sasaki, S., and Tanaka, M. (2006) Reinvestigation of the $MgSiO_3$ perovskite structure at high pressure. Am. Miner., 91, 533-536.   DOI
38 Oganov, A. R. (2007) Theory and Practice Thermodynamics, Equations of State, Elasticity, and Phase Transitions of Minerals at High Pressures and Temperatures. Mineral Physics. G. D. Price, Elsevier. 6, 122-151.
39 Momma, K. and Izumi, F. (2011) VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr., 44, 1272-1276.   DOI   ScienceOn
40 Mosenfelder, J. L., Asimow, P. D., Frost, D. J., Rubie, D. C., and Ahrens, T. J. (2009) The $MgSiO_3$ system at high pressure: Thermodynamic properties of perovskite, postperovskite, and melt from global inversion of shock and static compression data. J. Geophys. Res.-Solid Earth, 114.
41 Pastore, G., Smargiassi, E., and Buda, F. (1991) Theory of ab initio molecular-dynamics calculations. 44, 6334-6347.   DOI
42 Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D. (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64, 1045-1096.   DOI
43 Perdew, J. P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868.   DOI   ScienceOn
44 Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X. L., and Burke, K. (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett., 100, 136406.   DOI
45 Xu, Wenbo, Lithgow-Bertelloni, Carolina, Stixrude, Lars, and Ritsema, Jeroen (2008) The effect of bulk composition and temperature on mantle seismic structure. Earth Planet Sc. Lett., 275, 70-79.   DOI
46 Tackley, P. J. (2007) Mantle Geochemical Geodynamics. Treatise on Geophysics. S. Gerald. Amsterdam, Elsevier, 437-505.
47 Tse, John S. (2002) Ab Initio Molecular Dynamics With Density Functional Theory. Annu. Rev. Phys. Chem., 53, 249-290.   DOI   ScienceOn
48 Wu, M., Liang, Y. F., Jiang, J. Z., and Tse, J. S. (2012) Structure and Properties of Dense Silica Glass. Sci Rep, 2, 398.   DOI
49 Lee, S. K. (2011) Simplicity in melt densification in multicomponent magmatic reservoirs in Earth's interior revealed by multinuclear magnetic resonance. Proc. Natl. Acad. Sci. U.S.A., 108, 6847-6852.   DOI   ScienceOn
50 Milman, V., Refson, K., Clark, S. J., Pickard, C. J., Yates, J. R., Gao, S. P., Hasnip, P. J., Probert, M. I. J., Perlov, A., and Segall, M. D. (2010) Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation. Theochem-J. Mol. Struct., 954, 22-35.   DOI   ScienceOn
51 Pickard, C. J. and Mauri, F. (2001) All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B, 63, 245101.   DOI
52 Price, G. David (2007) Mineral physics. Treatise on geophysics. Amsterdam, Elsevier.
53 Mizoguchi, Teruyasu, Tanaka, Isao, Yoshiya, Masato, Oba, Fumiyasu, Ogasawara, Kazuyoshi, and Adachi, Hirohiko (2000) Core-hole effects on theoretical electron-energy-loss near-edge structure and nearedge x-ray absorption fine structure of MgO. Phys. Rev. B, 61, 2180-2187.   DOI