Browse > Article
http://dx.doi.org/10.17702/jai.2022.23.3.75

Enhanced Environmental Stability of Graphene Field-Effect Transistors through Interface Control  

Seong, Jun Ho (Department of Chemical Engineering, Kumoh National Institute of Technology)
Lee, Dong Hwa (Department of Chemical Engineering, Kumoh National Institute of Technology)
Lee, Eunho (Department of Chemical Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of Adhesion and Interface / v.23, no.3, 2022 , pp. 75-79 More about this Journal
Abstract
Graphene is a two-dimensional carbon allotrope composed of honeycomb sp2 hybrid orbital bonds. It shows excellent electrical and mechanical properties and has been spotlighted as a core material for next-generation electronic devices. However, it exhibits low environmental stability due to the easy penetration or adsorption of external impurities from the formation of an unstable interface between the materials in the electronic devices. Therefore, this work aims to improve and investigate the low environmental stability of graphene-based field-effect transistors through direct growth using solid hydrocarbons as a precursor of graphene. Graphene synthesized from direct growth shows high electrical stability through reduction of change in charge mobility and Dirac voltage. Through this, a new approach to utilize graphene as a core material for next-generation electronic devices is presented.
Keywords
Graphene; Stability; Field-effect transistors; Hysteresis; 2D materials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Jia, M. Zheng, X. Fan, Y. Su, S. Li, H. Liu, G. Chen, Y. Kawazoe, Sci. Rep., 6, 18869 (2016).   DOI
2 W. Yuan, G. Shi, J. Mater. Chem. A., 1, 10078-10091 (2013).   DOI
3 E. Lee, S. G. Lee, H. C. Lee, M. Jo, M. S. Yoo, K. Cho, Adv. Mater., 30, 1706569 (2018).   DOI
4 E. Lee, H. Lim, N. Lee, H. H. Kim, Sens. & Actuators: B. Chem., 347, 130579 (2021).
5 E. Lee, D. Bang, J. Adhesion & Interface, 22, 153-157 (2021).
6 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).   DOI
7 K. Ho, M. Boutchich, C. Su, R. Moreddu, E. S. R. Marianathan, L. Montes, C. Lai, Adv. Mater., 27, 6519-6525 (2015).   DOI
8 S. F. Shaikh, M. M. Hussain, Appl. Phys. Lett., 117, 074101 (2020).   DOI
9 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, Science. 306, 666-669 (2004).   DOI
10 R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science. 320, 1308 (2008).   DOI
11 Y. Zhou, D. Dai, Y. Gao, Z. Zhang, N. Sun, H. Tan, X. Cai, J. Cai, Chem. Nano Mat., 7, 982-997 (2021).
12 Y. Liu, X. Dong, P. Chen, Chem. Soc. Rev., 41, 2283-2307 (2012).   DOI
13 B. Kwon, H. Bae, H. Lee, S. Kim, J. Hwang, H. Lim, J. H. Lee, K. Cho, J. Ye, S. Lee, W. H. Lee, ACS Nano, 16, 2176-2187 (2022).   DOI
14 H. Kim, Y. Chung, E. Lee, S. K. Lee, K. Cho, Adv. Mater., 26,3213-3217 (2014).   DOI