• Title/Summary/Keyword: 탄성파 에너지

Search Result 153, Processing Time 0.034 seconds

Evaluating Accuracy of Algorithms Providing Subsurface Properties Using Full-Reference Image Quality Assessment (완전 참조 이미지 품질 평가를 이용한 지하 매질 물성 정보 도출 알고리즘의 정확성 평가)

  • Choi, Seungpyo;Jun, Hyunggu;Shin, Sungryul;Chung, Wookeen
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.1
    • /
    • pp.6-19
    • /
    • 2021
  • Subsurface physical properties can be obtained and imaged by seismic exploration, and various algorithms have been developed for this purpose. In this regard, root mean square error (RMSE) has been widely used to quantitatively evaluate the accuracy of the developed algorithms. Although RMSE has the advantage of being numerically simple, it has limitations in assessing structural similarity. To supplement this, full-reference image quality assessment (FR-IQA) techniques, which reflect the human visual system, are being investigated. Therefore, we selected six FR-IQA techniques that could evaluate the obtained physical properties. In this paper, we used the full-waveform inversion, because the algorithm can provide the physical properties. The inversion results were applied to the six selected FR-IQA techniques using three benchmark models. Using salt models, it was confirmed that the inversion results were not satisfactory in some aspects, but the value of RMSE decreased. On the other hand, some FR-IQA techniques could definitely improve the evaluation.

Modification of SPT-Uphole Method using Two Component Surface Geophones (2방향 지표면 속도계를 활용한 SPT-업홀 기법 개선 연구)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.109-120
    • /
    • 2006
  • SPT-Uphole test is a seismic field test using receivers on ground surface and a SPT (Standard penetration test) source in depth. Even though this method is simple and economic, it makes hesitate to apply in real field that it is difficult to obtain reliable travel time information of shear wave because of the characteristics of SPT impact source. To overcome this shortcoming, in this paper, modified SPT-Uphole method using two component surface geophones was suggested. Numerical analysis was performed using finite element method for understanding the characteristics of surface motion induced by in-depth vertical source, and comparison study of the various methods which determine the travel time information in SPT-Uphole method was performed. In result, it is thought that the most reasonable method is using the first local maximum point of the root mean square value signals of vertical and horizontal component in time domain. Finally, modified SPT-Uphole method using two component surface geophones was performed at the site, and the applicability in field was verified by comparing wave velocity profiles determined by the SPT-Uphole method with the profiles determined by SASW method and SPT-N values.

Imaging of Seismic Sources Using Time Reversal Wave Propagation (지진파 역행 전파를 이용한 지진원 영상화)

  • Sheen, Dong-Hoon;Baag, Chang-Eob;Hwang, Eui-Hong;Ryoo, Yong Gyu;Youn, Yong-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.181-186
    • /
    • 2006
  • An imaging method of seismic sources using time-reversal wave propagation is presented. The method is based on the time-reversal invariance and the spatial reciprocity of the wave equation. Time-reversal wave propagation has been used to image anomalous features of a midium in medical imaging, non destructive testing and waveform tomography. Seismogram is the record whose energy is propagated from the seismic source. If time-reversed seismogram propagates back into the medium, seismic energy is concentrated at the origin time of the event and at the source location. In this work, a staggered-grid finite-difference method of the elastic wave equation is parallelized for 3-D wave propagation simulation. With numerical experiments, we show that the time-reversal imaging will enable us to explore the spatio-temporal history of complex earthquake.

  • PDF

Energy Based Source Location by Using Acoustic Emission for Damage Detection in Steel and Composite CNG Tank (금속 및 복합재 CNG 탱크에서의 손상 검출을 위한 음향방출 에너지 기반 위치표정 기술)

  • Kim, Il-Sik;Han, Byeong-Hee;Park, Choon-Su;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.332-340
    • /
    • 2015
  • Acoustic emission (AE) is an effective nondestructive test that uses transient elastic wave generated by the rapid release of energy within a material to detect any further growth or expansion of existing defects. Over the past decades, because of environmental issues, the use of compressed natural gas (CNG) as an alternative fuel for vehicles is increasing because of environmental issues. For this reason, the importance and necessity of detecting defects on a CNG fuel tank has also come to the fore. The conventional AE method used for source location is highly affected by the wave speed on the structure, and this creates problems in inspecting a composite CNG fuel tank. Because the speed and dispersion characteristics of the wave are different according to direction of structure and laminated layers. In this study, both the conventional AE method and the energy based contour map method were used for source location. This new method based on pre-acquired D/B was used for overcoming the limitation of damage localization in a composite CNG fuel tank specimen which consists of a steel liner cylinder overwrapped by GFRP. From the experimental results, it is observed that the damage localization is determined with a small error at all tested points by using the energy based contour map method, while there were a number of mis-locations or large errors at many tested points by using the conventional AE method. Therefore, the energy based contour map method used in this work is more suitable technology for inspecting composite structures.

High-Resolution Seismic Reflection Profiling on Land with Hydrophones Employed in the Stream-Water Driven Trench (하천수유입과 하이드로폰을 이용한 육상 고분해능 탄성파반사법탐사)

  • Kim Ji-Soo;Han Su-Hyung;Kim Hak-Soo;Choi Won-Suk;Jung Chang-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.133-144
    • /
    • 2001
  • An effective seismic reflection technique for mapping the cavities and bedrock surface in carbonate rocks is described. The high resolution seismic reflection images were successfully registered by using the hydrophones employed in the stream-water driven trench, and were effectively focused by applying optimal data processing sequences. The strategy included enhancement of the signal interfered with the large-amplitude scattering noise, through pre- and post stack processing such as time-variant filtering, bad-trace editing, residual statics, velocity analysis, and careful muting after NMO (normal moveout) correction. The major reflections including the bedrock surface were mapped with the desired resolution and were correlated to the seismic crosshole tomographic data. Shallow major reflectors could be identified and analyzed on the AGC (auto gain control)-applied field records. Three subhorizontal layers were identified with their distinct velocities; overburden (<3000 m/s), sediments (3000-4000 m/s), limestone bedrock (>4000 m/s). Taking into account of no diffraction effects in the field records, gravel-rich overburdens and sediments are considered to be well sorted. Based on the images mapped consistently on the whole survey line and seismic velocity increasing with depth, this area probably lacks in sizable cavities (if any, no air-filled cavities).

  • PDF

Analysis of acoustic scattering characteristics of an aluminum spherical shell with different internal fluids and classification using pseudo Wigner-Ville distribution (구형 알루미늄 쉘 내부의 충전 유체에 따른 수중 음향 산란 특성 분석 및 유사 위그너-빌 분포를 이용한 식별 기법 연구)

  • Choo, Yeon-Seong;Byun, Sung-Hoon;Kim, Sea-Moon;Lee, Keunhwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.549-557
    • /
    • 2019
  • The acoustical scattering characteristics of a target are influenced by the material properties and structural characteristics of the target, which are critical information for acoustic detection and identification of underwater target. In particular, for thin elastic target, unique scattered signals are generated around the target by the Lamb wave. In this paper, the results of scattered signal measurement of aluminum spherical shell in the water tank using the stepped frequency sweep sine signal are presented. In particular, the scattering of the water-filled aluminum spherical shell is compared with that of the air-filled one both theoretically and experimentally. The difference of the scattered signals are analyzed using the pseudo Wigner-Ville distribution in terms of average frequency, frequency distribution, and energy of the scattered signal. The result shows that all observed parameters increased when the aluminum sphere was water-filled, and it is well matched to the theoretical expectation.

Damped Wave Equation-based Traveltime Calculation using Embedded Boundary Method for Irregular Topography (Embedded Boundary Method를 이용한 불규칙한 지형에서의 감쇠 파동장 기반 초동주시 계산)

  • Hwang, Seongcheol;Lee, Ganghoon;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.12-20
    • /
    • 2019
  • The first-arrival traveltime calculation method based on the damped wave equation overcomes the shortcomings of ray-tracing methods. Since this algorithm needs to solve the damped wave equation, numerical modeling is essential. However, it is not desirable to use the finite-difference method (FDM), which has good computational efficiency, for simulating the land seismic data because of irregular topography. Thus, the finite-element method (FEM) which requires higher computational cost than FDM has been used to correctly describe the irregular topography. In this study, we computed first-arrival traveltimes in an irregular topographic model using FDM incorporating embedded boundary method (EBM) to overcome this problem. To verify the accuracy and efficiency of the proposed algorithm, we compared our results with those of FEM. As a result, the proposed method using EBM not only provided the same accuracy as the FEM but also showed the improved computational efficiency.

Shearing Behavior of Flat Panel Glass by Oscillating Diamond (진동에 의한 평판 유리의 절단 거동)

  • Choi, Seong-Dae;Cheong, Seon-Hwan;Kim, Gi-Man;Jeon, Jae-Mock;Rho, Young-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2005
  • The localization of manufacturing technique development is actualizing for low cost with supplies of display devices. We need more high cutting technique because consumers want flat glasses of various sizes. Recently, most general two methods are normal wheel cutting and laser cutting, but both of them have some faults. First, the wheel cutting has cracks and sharp edges of sections. Second, it is easy for laser cutting to cut curved lines. however, it has thermal damage and low traverse speed. I suggest a new cutting method by high-wave frequency vibration wheel cutting(HFVC), which is good for quality improvement. Vertical cracks and crack depth is observed, after HFVC. When the average of the crack depth is $30{\mu}m$ and the average of the wallner liner depth is $200{\mu}m$, it has the most high quality of the sections in this experiment. As a result, when we consider between the normal wheel cutting method and the HFVC method, the latter has low cracks and good quality.

  • PDF

Crack Detection of Composite Cylinders under external pressure using the Acoustic Emission (AE 기법을 이용한 외부수압을 받는 복합재 원통의 균열 검출)

  • Park, Jin-Ha;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.25-30
    • /
    • 2011
  • The studies on the non-destructive testing methods of the composite materials are very important for improving their reliability and safety. AE(Acoustic Emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the generation and growth of a crack, plastic deformation, fiber breakage, matrix cleavage or delamination. In this paper, the AE signals of the filament wound composite cylinder and sandwich cylinder during the pressure test were measured and analyzed. The signal characteristics of PVDF sensors were measured, and an AE signal analyzer which had the band-pass filter and L-C resonance filter were designed and fabricated. Also, the crack detection capability of the fabricated AE signal analyzer wes evaluated during the pressure tests of the filament wound composite cylinder and the sandwich cylinder.

Full Waveform Inversion Using Automatic Differentiation (자동 미분을 이용한 전파형 역산)

  • Wansoo, Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.242-251
    • /
    • 2022
  • Automatic differentiation automatically calculates the derivatives of a function using the chain rule once the forward operation of a function is defined. Given the recent development of computing libraries that support automatic differentiation, many researchers have adopted automatic differentiation techniques to solve geophysical inverse problems. We analyzed the advantages, disadvantages, and performances of automatic differentiation techniques using the gradient calculations of seismic full waveform inversion objective functions. The gradients of objective functions can be expressed as multiplications of the derivatives of the model parameters, wavefields, and objective functions using the chain rule. Using numerical examples, we demonstrated the speed of analytic differentiation and the convenience of complex gradient calculations for automatic differentiation. We calculated derivatives of model parameters and objective functions using automatic differentiation and derivatives of wavefields using analytic differentiation.