Browse > Article
http://dx.doi.org/10.7582/GGE.2019.22.1.012

Damped Wave Equation-based Traveltime Calculation using Embedded Boundary Method for Irregular Topography  

Hwang, Seongcheol (Department of Energy Resources Engineering, Inha University)
Lee, Ganghoon (Department of Energy Resources Engineering, Inha University)
Pyun, Sukjoon (Department of Energy Resources Engineering, Inha University)
Publication Information
Geophysics and Geophysical Exploration / v.22, no.1, 2019 , pp. 12-20 More about this Journal
Abstract
The first-arrival traveltime calculation method based on the damped wave equation overcomes the shortcomings of ray-tracing methods. Since this algorithm needs to solve the damped wave equation, numerical modeling is essential. However, it is not desirable to use the finite-difference method (FDM), which has good computational efficiency, for simulating the land seismic data because of irregular topography. Thus, the finite-element method (FEM) which requires higher computational cost than FDM has been used to correctly describe the irregular topography. In this study, we computed first-arrival traveltimes in an irregular topographic model using FDM incorporating embedded boundary method (EBM) to overcome this problem. To verify the accuracy and efficiency of the proposed algorithm, we compared our results with those of FEM. As a result, the proposed method using EBM not only provided the same accuracy as the FEM but also showed the improved computational efficiency.
Keywords
damped wave equation; first-arrival traveltime; embedded boundary method; finite-difference method; irregular topography;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Alkhalifah, T., and Fomel, S., 2001, Implementing the fast marching eikonal solver: spherical versus Cartesian coordinates, Geophys. Prospect., 49(2), 165-178.   DOI
2 AlSalem, H., Petrov, P., Newman, G., and Rector, J., 2018, Embedded boundary methods for modeling 3D finitedifference Laplace-Fourier domain acoustic wave equation with free-surface topography, Geophysics, 83(5), T291-T300.   DOI
3 Cerveny, V., Molotkov, I. A., and Psencik, I., 1977, Ray method in seismology, Univ. of karlova press.
4 Gray, S. H., and Marfurt, K. J., 1995, Migration from topography: Improving the near-surface image, Can. J. Explor. Geophys., 31(1-2), 18-24.
5 Julian, B. R., and Gubbins, D., 1977, Three-dimensional seismic ray tracing, J. Geophys. Res., 43(1), 95-114.   DOI
6 Jo, C. H., Shin, C., and Suh, J. H., 1996, An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator, Geophysics, 61(2), 529-537.   DOI
7 Kim, S., 2002, 3-D eikonal solvers: First-arrival traveltimes, Geophysics, 67(4), 1225-1231.   DOI
8 Komatitsch, D., Martin, R., Tromp, J., Taylor, M. A., and Wingate, B. A., 2001, Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles, J. Comput. Acoust., 9(2), 703-718.   DOI
9 Kreiss, H. O., and Petersson, N. A., 2006, A second order accurate embedded boundary method for the wave equation with Dirichlet data, SIAM J. Sci. Comput., 27(4), 1141-1167.   DOI
10 Li, J., Zhang, Y., and Toksoz, M. N., 2010, Frequency-domain finite-difference acoustic modeling with free surface topography using embedded boundary method, 80th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 2966-2971.
11 Lee, D., Park, Y., and Pyun, S., 2017, Analysis on the Reliability and Influence Factors of Refraction Traveltime Tomography Depending on Source-receiver Configuration. Geophys. and Geophys. Explor., 20(3), 163-175 (In Korean with English abstract).   DOI
12 Miller, G. H., and Trebotich, D., 2012, An embedded boundary method for the Navier-Stokes equations on a time-dependent domain, Comm. App. Math. Comp. Sci., 7(1), 1-31.   DOI
13 Park, Y., and Pyun, S., 2018, Refraction traveltime tomography based on damped wave equation for irregular topographic model, J. Appl. Geophy., 150, 160-171.   DOI
14 Pereyra, V., Lee, W. H. K., and Keller, H. B., 1980, Solving two-point seismic-ray tracing problems in a heterogeneous medium: Part 1. A general adaptive finite difference method, Bull. Seismol. Soc. Amer., 70(1), 79-99.   DOI
15 Pyun, S., Shin, C., Min, D. J., and Ha, T., 2005, Refraction traveltime tomography using damped monochromatic wavefield, Geophysics, 70(2), U1-U7.   DOI
16 Pyun, S., Son, W., and Shin, C., 2011, 3D acoustic waveform inversion in the Laplace domain using an iterative solver, Geophys. Prospect., 59(3), 386-399.   DOI
17 Pyun, S., and Park, Y., 2016, A Study on Consistency of Numerical Solutions for Wave Equation, Geophys. and Geophs. Explor., 19(3), 136-144 (In Korean with English abstract).   DOI
18 Schwartz, P., Barad, M., Colella, P., and Ligocki, T., 2006, A Cartesian grid embedded boundary method for the heat equation and Poisson's equation in three dimensions, J. Comput. Phys., 211(2), 531-550.   DOI
19 Sethian, J. A., and Popovici, A. M., 1999, 3-D traveltime computation using the fast marching method, Geophysics, 64(2), 516-523.   DOI
20 Shin, C., Min, D. J., Marfurt, K. J., Lim, H. Y., Yang, D., Cha, Y., Ko, S., Yoon, K., Ha, T., and Hong, S., 2002, Traveltime and amplitude calculations using the damped wave solution, Geophysics, 67(5), 1637-1647.   DOI
21 Shin, C., Ko, S., Kim, W., Min, D. J., Yang, D., Marfurt, K. J., Shin, S., Yoon, K., and Yoon, C. H., 2003, Traveltime calculations from frequency-domain downward-continuation algorithms, Geophysics, 68(4), 1380-1388.   DOI
22 Sun, Y., and Fomel, S., 1998, Fast-marching eikonal solver in the tetragonal coordinates 68th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 1949-1952.
23 Vidale, J. E., 1990, Finite-difference calculation of traveltimes in three dimensions, Geophysics, 55(5), 521-526.   DOI
24 Vinje, V., Iversen, E., and Gjoystdal, H., 1993, Traveltime and amplitude estimation using wavefront construction, Geophysics, 58(8), 1157-1166.   DOI
25 Zhang, X., and Bording, R., 2011, Fast marching method seismic traveltimes with reconfigurable field programmable gate arrays, Can. J. Explor. Geophys., 36(1), 60-68.
26 Zhang, X., and Tan, S., 2015, A simple and accurate discontinuous Galerkin scheme for modeling scalar-wave propagation in media with curved interfaces, Geophysics, 80(2), T83-T89.   DOI