Browse > Article
http://dx.doi.org/10.7582/GGE.2022.25.4.242

Full Waveform Inversion Using Automatic Differentiation  

Wansoo, Ha (Department of Energy Resources Engineering, Pukyong National University)
Publication Information
Geophysics and Geophysical Exploration / v.25, no.4, 2022 , pp. 242-251 More about this Journal
Abstract
Automatic differentiation automatically calculates the derivatives of a function using the chain rule once the forward operation of a function is defined. Given the recent development of computing libraries that support automatic differentiation, many researchers have adopted automatic differentiation techniques to solve geophysical inverse problems. We analyzed the advantages, disadvantages, and performances of automatic differentiation techniques using the gradient calculations of seismic full waveform inversion objective functions. The gradients of objective functions can be expressed as multiplications of the derivatives of the model parameters, wavefields, and objective functions using the chain rule. Using numerical examples, we demonstrated the speed of analytic differentiation and the convenience of complex gradient calculations for automatic differentiation. We calculated derivatives of model parameters and objective functions using automatic differentiation and derivatives of wavefields using analytic differentiation.
Keywords
automatic differentiation; full waveform inversion; gradient;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X., 2016, TensorFlow: A system for large-scale machine learning, 12th USENIX Symposium on Operating Systems Design and Implementation, 265-283. https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
2 Anderson, J. E., Tan, L., and Wang, D., 2012, Time-reversal checkpointing methods for RTM and FWI, Geophysics, 77, S93-S103. https://doi.org/10.1190/geo2011-0114.1   DOI
3 Baydin, A., Pearlmutter, B., Radul, A., and Siskind, J., 2018, Automatic differentiation in machine learning: A survey, Journal of Machine Learning Research, 18, 1-43. https://www.jmlr.org/papers/volume18/17-468/17-468.pdf
4 Cao, D., and Liao, W., 2015, A computational method for full waveform inversion of crosswell seismic data using automatic differentiation, Computer Physics Communications, 188, 47-58. doi: 10.1016/j.cpc.2014.11.002   DOI
5 Deepwave, 2022, https://github.com/ar4/deepwave (July 13, 2022 Accessed)
6 Diffsharp, 2022, https://diffsharp.github.io (July 13, 2022 Accessed)
7 Esser, E., Guasch, L., Leeuwen, T. van, Aravkin, A. Y., and Herrmann, F. J., 2018, Total variation regularization strategies in full-waveform inversion, SIAM Journal on Imaging Sciences, 11, 376-406. https://doi.org/10.1137/17M111328X   DOI
8 Giering, R., Kaminski, T., and Slawig, T., 2005, Generating efficient derivative code with TAF adjoint and tangent linear Euler flow around an airfoil, Future Generation Computer Systems, 21, 1345-1355. https://doi.org/10.1016/j.future.2004.11.003   DOI
9 Griewank, A., 1992, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, Optimization Methods and Software Optimization Methods & Software, 1, 35-54. https://doi.org/10.1080/10556789208805505   DOI
10 Griewank, A., 1989, On automatic differentiation, Kluwer Academic Publishers. http://softlib.rice.edu/pub/CRPC-TRs/reports/CRPC-TR89003.pdf
11 Griewank, A., and Walther, A., 2000, Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation, ACM Transactions on Mathematical Software, 26, 19-45. https://doi.org/10.1145/347837.347846   DOI
12 Hascoet, L., and Pascual, V., 2013, The Tapenade automatic differentiation tool: Principles, model, and specification, ACM Transactions on Mathematical Software, 39(3), Article 20. https://doi.org/10.1145/2450153.2450158   DOI
13 Ha, W., 2021, Building software research environment using Linux container and version control system, Geophysics and Geophysical Exploration, 24(2), 45-52. https://doi.org/10.7582/GGE.2021.24.2.45   DOI
14 He, Q., and Wang, Y., 2021, Reparameterized full-waveform inversion using deep neural networks, Geophysics, 86, V1-V13. https://doi.org/10.1190/geo2019-0382.1   DOI
15 Marfurt, K., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations, Geophysics, 49, 533-549. https://doi.org/10.1190/1.1441689   DOI
16 Kingma, D. P., and Ba, J., 2015, Adam: A method for stochastic optimization, arXiv 1412.6980v9. https://doi.org/10.48550/arXiv.1412.6980   DOI
17 Lee, D., Lee, J., Shin, C., Shin, S., and Chung, W., 2022, Elastic full-waveform inversion using both the multiparametric approximate hessian and the discrete cosine transform, IEEE Transactions on Geoscience and Remote Sensing, 60, 5903510. https://ieeexplore.ieee.org/abstract/document/9509351
18 Li, D., Xu, K., Harris, J. M., and Darve, E., 2020, Coupled time-Lapse full-Waveform inversion for subsurface flow problems using intrusive automatic differentiation, Water Resources Research, 56(8), e2019WR027032. https://doi.org/10.1029/2019WR027032   DOI
19 Margossian, C. C., 2019, A review of automatic differentiation and its efficient implementation, WIREs Data Mining and Knowledge Discovery, 9, e1305. https://doi.org/10.1002/widm.1305   DOI
20 Naumann, U., and Riehme, J., 2005, A differentiation-enabled Fortran 95 compiler. ACM Transactions on Mathematical Software, 31(4), 458-474. https://doi.org/10.1145/1114268.1114270   DOI
21 Nguyen, B. D., and McMechan, G. A., 2015, Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration, Geophysics, 80, S1-S18. https://doi.org/10.1190/geo2014-0014.1   DOI
22 Nguyen, B. D., and McMechan, G. A., 2013, Excitation amplitude imaging condition for prestack reverse-time migration, Geophysics, 78, S37-S46. https://doi.org/10.1190/geo2012-0079.1   DOI
23 Richardson, A., 2018, Seismic full-waveform inversion using deep learning tools and techniques, arXiv 1801.07232v2. https://doi.org/10.48550/arXiv.1801.07232
24 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A., 2017, Automatic Differentiation in PyTorch, 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA. https://openreview.net/forum?id=BJJsrmfCZ
25 Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophysical Journal International, 167, 495-503. https://adsabs.harvard.edu/full/2006GeoJI.167..495P   DOI
26 Reddi, S. J., Kale, S., and Kumar, S., 2018, On the convergence of adam and beyond, International Conference on Learning Representations, International Conference on Learning Representations. https://openreview.net/forum?id=ryQu7f-RZ
27 Sambridge, M., Rickwood, P., Rawlinson, N., and Sommacal, S., 2007, Automatic differentiation in geophysical inverse problems, Geophysical Journal International, 170, 1-8. https://doi.org/10.1111/j.1365-246X.2007.03400.x   DOI
28 Shen, X., and Clapp, R. G., 2015, Random boundary condition for memory-efficient waveform inversion gradient computation, Geophysics, 80, R351-R359. https://doi.org/10.1190/geo2014-0542.1   DOI
29 Shin, C., and Ha, W., 2017, Accumulated energy norm for full waveform inversion of marine data, Journal of Applied Geophysics, 147, 91-101. https://doi.org/10.1016/j.jappgeo.2017.10.005   DOI
30 Symes, W. W., 2007, Reverse time migration with optimal checkpointing, Geophysics, 72, SM213-SM221. https://doi.org/10.1190/1.2742686   DOI
31 Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259-1266. https://library.seg.org/doi/10.1190/1.1441754   DOI
32 Versteeg, R., 1994, The Marmousi experience: Velocity model determination on a synthetic complex data set, Leading Edge, 13, 927-936. doi: 10.1190/1.1437051   DOI
33 TensorBoard, 2022, https://www.tensorflow.org/tensorboard (July 13, 2022 Accessed)
34 TorchWI, 2022, https://github.com/pkgpl/TorchWI (July 13, 2022 Accessed)
35 Utke, J., Naumann, U., Fagan, M., Tallent, N., Strout, M., Heimbach, P., Hill, C., and Wunsch, C., 2008, OpenAD/F: A modular open-source tool for automatic differentiation of Fortran codes, ACM Transactions on Mathematical Software, 34(4), Article 18. https://www.mcs.anl.gov/uploads/cels/papers/P1230.pdf
36 Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, WCC1-WCC26. https://doi.org/10.1190/1.3238367   DOI
37 Vlasenko, A. V., Kohl, A., and Stammer, D., 2016, The efficiency of geophysical adjoint codes generated by automatic differentiation tools, Computer Physics Communications, 199, 22-28. https://doi.org/10.1016/j.cpc.2015.10.008   DOI
38 Wengert, R. E., 1964, A simple automatic derivative evaluation program, Communications of the ACM, 7, 463-464. https://doi.org/10.1145/355586.364791   DOI
39 Wu, Y., and McMechan, G.A., 2019, Parametric convolutional neural network-domain full-waveform inversion, Geophysics, 84, R881-R896. https://doi.org/10.1190/geo2018-0224.1   DOI
40 Yang, P., Gao, J., and Wang, B., 2014, RTM using effective boundary saving: A staggered grid GPU implementation, Computers & Geosciences, 68, 64-72. https://doi.org/10.1016/j.cageo.2014.04.004   DOI
41 Zhu, W., Xu, K., Darve, E., and Beroza, G.C., 2021, A general approach to seismic inversion with automatic differentiation, Computers & Geosciences, 151, 104751. https://doi.org/10.1016/j.cageo.2021.104751   DOI