Acknowledgement
이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음.
References
- Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X., 2016, TensorFlow: A system for large-scale machine learning, 12th USENIX Symposium on Operating Systems Design and Implementation, 265-283. https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
- Anderson, J. E., Tan, L., and Wang, D., 2012, Time-reversal checkpointing methods for RTM and FWI, Geophysics, 77, S93-S103. https://doi.org/10.1190/geo2011-0114.1
- Baydin, A., Pearlmutter, B., Radul, A., and Siskind, J., 2018, Automatic differentiation in machine learning: A survey, Journal of Machine Learning Research, 18, 1-43. https://www.jmlr.org/papers/volume18/17-468/17-468.pdf
- Cao, D., and Liao, W., 2015, A computational method for full waveform inversion of crosswell seismic data using automatic differentiation, Computer Physics Communications, 188, 47-58. doi: 10.1016/j.cpc.2014.11.002
- Deepwave, 2022, https://github.com/ar4/deepwave (July 13, 2022 Accessed)
- Diffsharp, 2022, https://diffsharp.github.io (July 13, 2022 Accessed)
- Esser, E., Guasch, L., Leeuwen, T. van, Aravkin, A. Y., and Herrmann, F. J., 2018, Total variation regularization strategies in full-waveform inversion, SIAM Journal on Imaging Sciences, 11, 376-406. https://doi.org/10.1137/17M111328X
- Giering, R., Kaminski, T., and Slawig, T., 2005, Generating efficient derivative code with TAF adjoint and tangent linear Euler flow around an airfoil, Future Generation Computer Systems, 21, 1345-1355. https://doi.org/10.1016/j.future.2004.11.003
- Griewank, A., 1992, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, Optimization Methods and Software Optimization Methods & Software, 1, 35-54. https://doi.org/10.1080/10556789208805505
- Griewank, A., 1989, On automatic differentiation, Kluwer Academic Publishers. http://softlib.rice.edu/pub/CRPC-TRs/reports/CRPC-TR89003.pdf
- Griewank, A., and Walther, A., 2000, Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation, ACM Transactions on Mathematical Software, 26, 19-45. https://doi.org/10.1145/347837.347846
- Hascoet, L., and Pascual, V., 2013, The Tapenade automatic differentiation tool: Principles, model, and specification, ACM Transactions on Mathematical Software, 39(3), Article 20. https://doi.org/10.1145/2450153.2450158
- Ha, W., 2021, Building software research environment using Linux container and version control system, Geophysics and Geophysical Exploration, 24(2), 45-52. https://doi.org/10.7582/GGE.2021.24.2.45
- He, Q., and Wang, Y., 2021, Reparameterized full-waveform inversion using deep neural networks, Geophysics, 86, V1-V13. https://doi.org/10.1190/geo2019-0382.1
- Kingma, D. P., and Ba, J., 2015, Adam: A method for stochastic optimization, arXiv 1412.6980v9. https://doi.org/10.48550/arXiv.1412.6980
- Lee, D., Lee, J., Shin, C., Shin, S., and Chung, W., 2022, Elastic full-waveform inversion using both the multiparametric approximate hessian and the discrete cosine transform, IEEE Transactions on Geoscience and Remote Sensing, 60, 5903510. https://ieeexplore.ieee.org/abstract/document/9509351
- Li, D., Xu, K., Harris, J. M., and Darve, E., 2020, Coupled time-Lapse full-Waveform inversion for subsurface flow problems using intrusive automatic differentiation, Water Resources Research, 56(8), e2019WR027032. https://doi.org/10.1029/2019WR027032
- Marfurt, K., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations, Geophysics, 49, 533-549. https://doi.org/10.1190/1.1441689
- Margossian, C. C., 2019, A review of automatic differentiation and its efficient implementation, WIREs Data Mining and Knowledge Discovery, 9, e1305. https://doi.org/10.1002/widm.1305
- Naumann, U., and Riehme, J., 2005, A differentiation-enabled Fortran 95 compiler. ACM Transactions on Mathematical Software, 31(4), 458-474. https://doi.org/10.1145/1114268.1114270
- Nguyen, B. D., and McMechan, G. A., 2015, Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration, Geophysics, 80, S1-S18. https://doi.org/10.1190/geo2014-0014.1
- Nguyen, B. D., and McMechan, G. A., 2013, Excitation amplitude imaging condition for prestack reverse-time migration, Geophysics, 78, S37-S46. https://doi.org/10.1190/geo2012-0079.1
- Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A., 2017, Automatic Differentiation in PyTorch, 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA. https://openreview.net/forum?id=BJJsrmfCZ
- Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophysical Journal International, 167, 495-503. https://adsabs.harvard.edu/full/2006GeoJI.167..495P https://doi.org/10.1111/j.1365-246X.2006.02978.x
- Reddi, S. J., Kale, S., and Kumar, S., 2018, On the convergence of adam and beyond, International Conference on Learning Representations, International Conference on Learning Representations. https://openreview.net/forum?id=ryQu7f-RZ
- Richardson, A., 2018, Seismic full-waveform inversion using deep learning tools and techniques, arXiv 1801.07232v2. https://doi.org/10.48550/arXiv.1801.07232
- Sambridge, M., Rickwood, P., Rawlinson, N., and Sommacal, S., 2007, Automatic differentiation in geophysical inverse problems, Geophysical Journal International, 170, 1-8. https://doi.org/10.1111/j.1365-246X.2007.03400.x
- Shen, X., and Clapp, R. G., 2015, Random boundary condition for memory-efficient waveform inversion gradient computation, Geophysics, 80, R351-R359. https://doi.org/10.1190/geo2014-0542.1
- Shin, C., and Ha, W., 2017, Accumulated energy norm for full waveform inversion of marine data, Journal of Applied Geophysics, 147, 91-101. https://doi.org/10.1016/j.jappgeo.2017.10.005
- Symes, W. W., 2007, Reverse time migration with optimal checkpointing, Geophysics, 72, SM213-SM221. https://doi.org/10.1190/1.2742686
- Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259-1266. https://library.seg.org/doi/10.1190/1.1441754
- TensorBoard, 2022, https://www.tensorflow.org/tensorboard (July 13, 2022 Accessed)
- TorchWI, 2022, https://github.com/pkgpl/TorchWI (July 13, 2022 Accessed)
- Utke, J., Naumann, U., Fagan, M., Tallent, N., Strout, M., Heimbach, P., Hill, C., and Wunsch, C., 2008, OpenAD/F: A modular open-source tool for automatic differentiation of Fortran codes, ACM Transactions on Mathematical Software, 34(4), Article 18. https://www.mcs.anl.gov/uploads/cels/papers/P1230.pdf
- Versteeg, R., 1994, The Marmousi experience: Velocity model determination on a synthetic complex data set, Leading Edge, 13, 927-936. doi: 10.1190/1.1437051
- Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, WCC1-WCC26. https://doi.org/10.1190/1.3238367
- Vlasenko, A. V., Kohl, A., and Stammer, D., 2016, The efficiency of geophysical adjoint codes generated by automatic differentiation tools, Computer Physics Communications, 199, 22-28. https://doi.org/10.1016/j.cpc.2015.10.008
- Wengert, R. E., 1964, A simple automatic derivative evaluation program, Communications of the ACM, 7, 463-464. https://doi.org/10.1145/355586.364791
- Wu, Y., and McMechan, G.A., 2019, Parametric convolutional neural network-domain full-waveform inversion, Geophysics, 84, R881-R896. https://doi.org/10.1190/geo2018-0224.1
- Yang, P., Gao, J., and Wang, B., 2014, RTM using effective boundary saving: A staggered grid GPU implementation, Computers & Geosciences, 68, 64-72. https://doi.org/10.1016/j.cageo.2014.04.004
- Zhu, W., Xu, K., Darve, E., and Beroza, G.C., 2021, A general approach to seismic inversion with automatic differentiation, Computers & Geosciences, 151, 104751. https://doi.org/10.1016/j.cageo.2021.104751