• Title/Summary/Keyword: 컴퓨팅적사고력

Search Result 261, Processing Time 0.025 seconds

Case Study of Elementary School Classes based on Artificial Intelligence Education (인공지능 교육 기반 초등학교 수업 사례 분석)

  • Lee, Seungmin
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.733-740
    • /
    • 2021
  • The purpose of this study is to present the direction of elementary school AI education by analyzing cases of classes related to AI education in actual school settings. For this purpose, 19 classes were collected as elementary school class cases based on AI education. According to the result of analyzing the class case, it was confirmed that the class was designed in a hybrid aspect of learning content and method using AI. As a result of analyzing the achievement standards and learning goals, action verbs related to memory, understanding, and application were found in 8 classes using AI from a tool perspective. When class was divided into introduction, development, and rearrangement stages, the AI education element appeared the most in the development stage. On the other hand, when looking at the ratio of learning content and learning method of AI education elements in the development stage, the learning time for approaching AI education as a learning method was overwhelmingly high. Based on this, the following implications were derived. First, when designing the curriculum for schools and grades, it should be designed to comprehensively deal with AI as a learning content and method. Second, to supplement the understanding of AI, in the short term, it is necessary to secure the number of hours in practical subjects or creative experience activities, and in the long term, it is necessary to secure information subjects.

Case Analysis of Elementary School Classes based on Artificial Intelligence Education (인공지능 교육 기반 초등학교 수업 사례 분석)

  • Lee, Seungmin
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.377-383
    • /
    • 2021
  • The purpose of this study is to present the direction of elementary school AI education by analyzing cases of classes related to AI education in actual school settings. For this purpose, 19 classes were collected as elementary school class cases based on AI education. According to the result of analyzing the class case, it was confirmed that the class was designed in a hybrid aspect of learning content and method using AI. As a result of analyzing the achievement standards and learning goals, action verbs related to memory, understanding, and application were found in 8 classes using AI from a tool perspective. When class was divided into introduction, development, and rearrangement stages, the AI education element appeared the most in the development stage. On the other hand, when looking at the ratio of learning content and learning method of AI education elements in the development stage, the learning time for approaching AI education as a learning method was overwhelmingly high. Based on this, the following implications were derived. First, when designing the curriculum for schools and grades, it should be designed to comprehensively deal with AI as a learning content and method. Second, to supplement the understanding of AI, in the short term, it is necessary to secure the number of hours in practical subjects or creative experience activities, and in the long term, it is necessary to secure information subjects.

  • PDF

The Influence of Learning App Inventor Programming of LT Collaborative Learning based on Children's Motivation (LT 협동학습 기반의 앱 인벤터 프로그래밍 교육이 초등학생들의 학습 동기에 미치는 영향)

  • Jeon, SeongKyun;Lee, YoungJun
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • Excessive cognitive burdens caused by learning grammar should be reduced to cultivate high-level thinking skills in students through programing education. To this end, various educational programing languages have been developed. In recent years, block-based App Inventor that can used in real life have been introduced. This study intends to suggest an educational environment in which programing can be utilized as a leading problem solving tool by designing and producing an app that can be easily used by students in their real life. In particular, given the developmental phase of elementary school students, specific operational activities are important. For this reason, an App Inventor that can be proposed to enable dynamic interactions with the real world based on various smartphone sensors during the process of programing has significance as an educational programing language for elementary school students. In this regard, this study designed App Inventor programing education for elementary school students, which can be used in their daily life. The results of applying the education in fifth graders showed its positive effects on learning programing. LT collaborative learning where the students cooperated with each other, the theme of learning, which enables the utilization of various smartphone sensors in real life, and the app inventor may have generated and sustained the students' interest and attention.

Operation of a 3-Year Training Program for Elementary and Secondary Administrators to Foster Creative Convergence Talent (창의융합 인재 양성을 위한 3년간의 초·중등 관리자 연수 프로그램 운영)

  • Jung, Yujin;Park, Namje
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.177-186
    • /
    • 2021
  • The 2015 revised curriculum is structured around the core competencies of the 21st century, this is in line with the world's flow of education, such as OECD Education 2030. A future practical leading model was studied to provide a variety of creative teaching and learning experiences to elementary and Secondary students using intelligent information technology to cultivate core competencies such as ICT and computing thinking. In order for this practical model to stably settle the school field, the training was planned and operated to strengthen the creative convergence education capacity required by the teachers at the unit school through various types of the training. In particular, a nationwide administrators training program was operated for three years, reflecting the new curriculum, teaching and learning methods, and evaluation that can lead to future convergence talent training. In this paper, the perception of creative convergence education was investigated and analyzed considering the influence that administrators may have on the school field. Based on this, through the three-year operation results of the training, it was intended to establish a new training method for stable access to future creative convergence education under the post-corona era's social issues.

A Study on the Activation Plan for Early Childhood SW·AI Education Based on Actual Condition Survey of Kindergarten SW·AI Education (유치원 SW·AI 교육 실태조사를 기초로 한 유아 SW·AI 교육 활성화 방안에 관한 연구)

  • Pyun, Youngshin
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.93-97
    • /
    • 2022
  • The purpose of this study is to suggest implications for early childhood SW·AI education considering the characteristics of early childhood education through a survey on SW·AI education in kindergartens. For this study, data were collected from 194 kindergartens through convenience sampling. The data was analyzed using frequency distribution, and it was found that 44% of kindergartens are conducting SW·AI education. 22% are conducting SW·AI education in the form of regular curriculum, and 70% are conducting SW·AI education in the form of special activities after school. SW·AI education was found to be conducted mainly by external instructors (97%) in the classroom (80%). For SW·AI education, block coding-based programs developed by companies such as Naver and the Clova were used, and all of these programs used programs and teaching aids in a package format, including teaching aids and materials developed by companies. 56% answered that they are not currently conducting SW/AI education, and lack of awareness on SW·AI education and lack of human/environmental infrastructure were the main factors. In order to realize SW·AI education considering the characteristics of early childhood education based on this survey, First, SW·AI education programs should be developed to develop play-centered computational thinking skills. Second, systematic teacher education at the national level should be conducted. Finally, the establishment of a department dedicated to early childhood SW·AI consisting of early childhood education experts and SW·AI education experts and financial support at the national level should be provided.

Design of Embodiment-based Programming Education using Arduino for Middle School Students (중학생을 대상으로 한 아두이노를 활용한 체현 기반 프로그래밍 교육 설계)

  • Eom, Hyun-Young;Lee, Kang-Hee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.471-476
    • /
    • 2020
  • We propose an practical embodiment-based programming training course for middle school students using Arduino and conduct survey before and after the curriculum. Arduino is an open source physical computing platform that integrates the IDE used in processing language. It is a low-cost, relatively simple I/O interface compared to other platforms, and because of its practical formability, it is educational material suitable for programming. Subsequent surveys will provide feedback on changes in cognition of programming needs and improvement in thinking skills. In this study, the program based on embody-based programming using Arduino was conducted for 8 weeks for each first grade, and 112 middle school students for two years from '16 to '17. Based on the theoretical and practical training, the training was based on the application of the ultrasonic sensor to the RC car and the preparation of the adduction quadrotor drone. The purpose of this study is to prove that the recognition, necessity, and programming education of middle school students are effective for the improvement of thinking ability through the program based on embody-based programming using Arduino.

Review on Artificial Intelligence Education for K-12 Students and Teachers (K-12 학생 및 교사를 위한 인공지능 교육에 대한 고찰)

  • Kim, Soohwan;Kim, Seonghun;Lee, Minjeong;Kim, Hyeoncheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • The purpose of this study is to propose the direction of AI education in K-12 education through investigating and analyzing aspects of the purpose, content, and methods of AI education as the curriculum and teacher training factors. We collected and analyzed 9 papers as the primary literature and 11 domestic and foreign policy reports as the secondary literature. The collected literatures were analyzed by applying a descriptive reviews, and the implications were derived by analyzing the curriculum components and TPACK elements for multi-dimensional analysis. As a result of this study, AI education targets were divided into three steps: AI users, utilizer, and developers. In K-12 education, the user and utilizer stages are appropriate, and artificial intelligence literacy must be included for user education. Based on the current computing thinking ability and coding ability for utilizer education, the implication was derived that it is necessary to target the ability to create creative output by applying the functions of artificial intelligence. In addition to the pedagogical knowledge and the ability to use the platform, The teacher training is necessary because teachers need content knowledge such as problem-solving, reasoning, learning, perception, and some applied mathematics, cognitive / psychological / ethical of AI.

The Analysis of 'Software Education' Unit in the Practical Arts Textbooks According to 2015 Revised Curriculum (2015 개정 교육과정에 따른 실과 교과서 '소프트웨어 교육' 단원 분석)

  • Kim, Myeong-nam;Park, SunJu
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.3
    • /
    • pp.255-264
    • /
    • 2019
  • Modern society has become a key factor in determining software competitiveness. Therefore, Korea has required more than 17 hours of software education per year in the actual course subject to the 2015 revised curriculum. In this paper, we analyzed the software related units in 6 kinds of textbooks of elementary school published based on '2015 revised curriculum' and tried to provide basic data for selection of textbooks related to software education in elementary school. As a result of the analysis, the 6 revised textbooks of 2015 appropriately reflected both 'understanding of software', 'procedural problem solving', 'contents of programming element and structure', and I was suggesting appropriate activities. Unit support materials use comics and illustrations to stimulate interest, supplement text, and deepen learning. Four kinds of textbooks provide additional information by presenting reading materials. However, in most textbooks, the proportion of learning using the appendix was low. Although it consists of units focused on knowledge understanding and practice, it can be a textbook that enhances students' interest and participation if they are made of software in daily life, problem solving by procedural thinking, and so on.

A Basic Study on the Development of Artificial Intelligence Education Content Based on Nuri Curriculum (누리교육과정 기반 인공지능교육 콘텐츠 개발에 관한 기초연구)

  • Pyun, Youngshin;Han, Jungsoo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.71-76
    • /
    • 2022
  • The innovative development of the 4th industry and the COVID-19 pandemic caused a great change in the education, eventually requiring elementary, middle and high schools, including kindergartens, to implement artificial intelligence(AI) education. However, since early childhood AI education is conducted in the form of results-oriented and special activities, the need for research on what early childhood AI education is and how to apply it to the Nuri curriculum has been raised. Accordingly, this study defined early childhood AI education through literature research, identified the contents of AI education, and organized and operated it in the Nuri curriculum. As a results, AI education for children should be conducted for the purpose of cultivating digital capabilities based on computing thinking skills, and computers, the Internet, and programs were extracted as sub-elements of child AI education contents. Two approaches were proposed to incorporate this into the Nuri curriculum. The first is to set each of the three AI education contents as a life theme, select sub-factors accordingly, and plan and implement activities suitable for each sub-factors. The second is to develop and operate AI education contents at the level of sub-educational activities in accordance with the life theme of the existing Nuri curriculum. It is hoped that this study will consider the characteristics of early childhood education and be organized in the Nuri curriculum to realize the true meaning of early childhood AI education, and more research on AI play education programs according to the five areas of the Nuri curriculum.

Analysis of the Operation Status of General High School Informatics Curriculum (일반계 고등학교의 정보 과목 운영현황 분석)

  • Kim, MinJeong;Kim, JaMee;Lee, WonKyu
    • Journal of Creative Information Culture
    • /
    • v.5 no.3
    • /
    • pp.225-236
    • /
    • 2019
  • Viewing and approaching problems based on computational thinking can be improved through informatics education, which is essential for students to live in a future society. The purpose of this study is to analyze the operation status of informatics subjects that have become general electives in the 2015 revised curriculum, and to contribute to enhancing the effect of future informatics subject. To achieve this goal, a questionnaire was conducted for 400 students who graduated from high school in 2015-2016, and five students and five informatics subjects teachers were interviewed. Operation period of Infomatics subject, contents, method and evaluation method were analyzed. As a result, the operation of informatics subjects varied greatly from the second semester of the first year to the second semester of the third year. The most common method was teaching type, but the percentage of self-study was high in the second semester of the third year. The contents of the study did not learn all the contents, and the use rate of textbooks was low in the class. This study confirmed that the informatics subject class did not proceed in the form of observing the curriculum similarly to other subjects excluded. It is also significant that for the first time, the operational status of informatics subjects was analyzed.