• Title/Summary/Keyword: 친수성 표면

Search Result 439, Processing Time 0.026 seconds

Enhancement of Membrane Performance through Surface Hydrophilization of Hydrophobic Porous Flat-sheet Membranes (소수성 다공성 평막의 표면 친수화를 통한 막성능 향상)

  • Kim, Baek-Ahm;Lee, Hak-Min;Lee, Bo-Seong;Kim, Sung-Pyo;Cheong, Seong-Ihl;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.438-443
    • /
    • 2011
  • In order to enhance water permeability through the improvement of fouling phenomena and wettability of hydrophobic porous membranes, various adsorption materials, i.e., poly(vinyl amine), poly (styrene sulfonic acid), poly(vinyl sulfonic acid), and poly(acrylamide-co-acrylic acid) were adsorbed onto the surface of polyethylene (PE) porous membrane. The concentration of adsorption solutions, adsorption time, the sort of salts and their ionic strength were varied, and the pure water permeability of their resulting adsorbed membranes was measured. In general, water permeability increased with an initial increase in the concentration of adsorption solution, adsorption time, and ionic strength and then decreased with a further increase. The pure water permeability of 375 $L/m^2h$(LMH), 35% enhancement, was obtained at a condition of poly(vinyl sulfonic acid) 1000 ppm, $Mg(NO_3)_2$ ionic strength(IS) 0.1, and adsorption time 150 sec, while the 50% (411 LMH) and 35% (374 LMH) enhancements were obtained at conditions of poly(styrene sulfonic acid) 1000 ppm, adsorption time 60 sec, and NaCl IS 0.1 and 0.2, respectively.

A Study on the Electroplating using Macroemulsion in High Pressure (고압 매크로에멀젼을 이용한 전해도금에 관한 연구)

  • Park, Ji-Young;Yang, Jun Youl;Suh, Dong Jin;Yoo, Ki-Pung;Lim, Jong Sung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.53-59
    • /
    • 2005
  • In this study, the supercritical electroplating was investigated by forming macroemulsion of electroplating solution using surfactant in supercritical $CO_2$. The fluorinated analogous AOT surfactant, sodium salt of bis (2,2,3,3,4,4,5,5-octafluoro-1-pentanol) sulfosuccinate which has both '$CO_2$ philic' chains and 'hydrophilic' head group was used as a surfactant, and Ni plate and Cu plate were used as the anode and the cathode, respectively. Electroplating was carried out in the conventional method and the supercritical macroemulsion and both results were compared. The supercritical electroplating was carried out in various concentration of surfactant such as 2, 4, 7 wt%, the volume ratio of Ni-plating solution to $CO_2$ was varied in the range of 10-70 vol%, and propane was used as a supercritical fluid instead of $CO_2$. According to the experimental results, the plated surface of Ni on Cu plate performed in supercritical macroemulsion was better than that, in conventional state. In the image of Ni surface plated on Cu plate in supercritical state, there were fewer pin-holes and pits comparing with that in the conventional process. The current and conductivity was increased as the volume ratio of Ni-plating solution to $CO_2$ was increased and the current and the amount of Ni plated on Cu plate were decreased as the concentration of surfactant become higher. In addition, in case of the continuous phase, using $CO_2$ was more effective than using $CO_2$.

Review of the study on the surfactant-induced foliar uptake of pesticide (계면활성제에 의해 유도되는 농약의 엽면 침투성 연구 현황)

  • Yu, Ju-Hyun;Cho, Kwang-Yun;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2002
  • Research trends in the measurement of foliar uptake of pesticides and the recently proposed action mechanism of the surfactant-induced uptake of pesticides were reviewed with the related reports and studies. Major techniques used in those fields are bioassay, radiotracer techniques with leaves or cuticular membrane. Recently, a new method using Congo Red as a tracer was proposed. The limiting factor in the pesticides uptake into leaves is the waxy layer which consists of the epicuticular and cuticular wax. Physico-chemical parameters such as molar volume, water solubility and partition coefficient of pesticides have limited influences on the pesticide uptake into leaves. Polydisperse ethoxylated fatty alcohol surfactants are well known as the good activator for many pesticides. It is now generally agreed that uptake activation is not related to the intrinsic surface active properties of surfactants such as surface activity, solvent property, humectancy and critical micelle concentration. Recent studies using ESR-spectroscopy revealed that the surfactants have an unspecific plasticising effect on the molecular structure of the wax and cuticular matrix, leading to increased mobilities of pesticides. Penetration of surfactants into waxy layer altered the pesticide mobility in wax and the partition coefficient of pesticide, and then the pesticides penetration into leaves was enhanced temporally. The enhancing effect of surfactant could be significantly different depending on the carbon number of aliphatic moiety and the number of ethoxy group in polyoxyethylene chain of surfactants. It is suggested that the rate of penetration of surfactants should have a significant relationship with the rate of penetration of pesticides.

Hydrophilic surface formation of polumer treated by ion assisted reaction and its applications (이온빔보조 반응법을 이용한 고분자 표면의 친수성처리와 그 응용)

  • Cho, J.;Choi, S. C.;Yun, K.H.;Koh, S. K.
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.262-268
    • /
    • 1999
  • Polycarbonate (PC) and Polymethylmethacrylate (PMMA) surface was modified by ion assisted reaction (IAR) technique to obtain the hydrophilic functional groups and improve the wettability. In conditions of ion assisted reaction, ion beam energy was changed from 500 to 1500eV, and ion dose and oxygen gas blown rate were fixed $1\times10^{16}$ ions/$\textrm{cm}^2$ and 4ml/min, respectively. Wetting angle of water on PC and PMMA surface modified by $Ar^+$ ion without blowing oxygen at 4ml/mon showed $5^{\circ}$ and $10^{\circ}$. Changes of wetting angle with oxygen gas and $Ar^+$ ion irradiation were explained by considering formation of hydrophilic group due to a reaction between irradiated polymer chain by energetic ion irradiation and blown oxygen gas. X-ray photoelectron spectroscopy analysis shows that hydrophilic groups such as -C-O, -(C=O)- and -(C=O)-O- are formed on the surface of polymer by chemical interaction. The polymer surface modification using ion assisted reaction only changed the surface physical properties and sept the bulk properties. In comparison with other modification methods, the surface modification by IAR treatment was chemically stable and enhanced the adhesion between metal and polymer surface. The applications of various kinds of polymer surface modification methods, metal and polymer surface. The applications of various kinds of polymer surface modification could be appled to the new materials about hydrophilic surface properties by IAR treatment. The adhesion between metal film and polymer measured by Scotch tape test whether the hydrophilic surfaces could improve the adhesion strength or not.

  • PDF

Microemulsions in Supercritical Carbon Dioxide Utilizing Nonionic Surfactants (초임계 이산화탄소내 비이온성 계면활성제를 이용한 마이크로에멀젼 형성연구)

  • Koh, Moonsung;Yoo, Jaeryong;Park, Kwangheon;Kim, Hongdoo;Kim, Hakwon
    • Clean Technology
    • /
    • v.10 no.4
    • /
    • pp.221-228
    • /
    • 2004
  • Ethoxylated Nonyl Phenol Series (NP-series), nonionic surfactants, were applied for forming microemulsions in supercritical $CO_2$. Measurement results of the solubility in supercritical $CO_2$ are in the following; NP-series were high soluble in carbon dioxide in spite of the fact that those were not $CO_2$-philic surfactants traditionally well known. Water in $CO_2$ microemulsions were also formed stably. A complexation of hydrophilic lengths for $CO_2$-philic parts of NP-Series surfactants was optimized by NP-4 surfactant(N=4) for forming the microemulsions through the experiments. Formation of microemulsions was confirmed by measuring the UV-Visible spectrum through a spectroscopic method and existence of water in the microemulsions was confirmed as well. In order to apply it for a metal surface treatment or electroplating, an experiment for forming acid(organic, inorganic) solution in $CO_2$ microemulsions was carried out. Ionic surfactant in the reaction to an acid solution became unstable to form microemulsions, however, nonionic surfactant was formed stably in the reaction. Results of the study will be utilized for expanding the application scope of supercritical $CO_2$ which is an environmental-friendly solvent.

  • PDF

Studies on the Gemini Type Amphipathic Surfactant(5) - Preparation and Properties of Double Chain Surfactant with Two Sulfonate Groups Derived from N-Acyldiethanolamines - (제미니형 양친매성 계면활성제에 관한 연구(제5보) - 함질소 장쇄아실디에탄올아민으로부터 유도된 두 개의 술폰산 염기를 갖는 화합물의 합성 및 계면특성 -)

  • Yun, Young-Kyun;Jeong, Hwan-Kyeong;Jeong, Noh-Hee;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.565-568
    • /
    • 1998
  • Amphipathic compounds (bis-sulfonate Gemini type) with double or triple long chain alkyl groups were prepared by the reaction of N-(long chain acyl)diethanolamine diglycidyl ethers with fatty alcohols, followed by the reaction with propanesultone. All these new Gemini type surfactants were soluble in water and showed much better micelle forming ability and lowering surface tension than sodium dodecyl sulfonate with one sulfonate group. cmc and ${\Upsilon}$ cmc values of the triple-chain compounds were still much smaller than those of the corresponding double-chain compounds with two common alkyl groups. The efficiency of adsorption at the water/air interface ($pC_{20}$) of these surfactants was very high. Their foaming properties, wetting ability toward a felt chip, and lime-soap dispersing requirement (LSDR) were measured. Their initial foaming properties were high but showed good low foam stability, wettability and LSDR.

  • PDF

Analysis of breaching behavior of levee according to coating thickness of new substance (신소재의 피복두께에 따른 제방의 붕괴 거동 분석)

  • Ko, Dong Woo;Kim, Sung Joong;Kang, Joon Gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.480-480
    • /
    • 2018
  • 전 세계적으로 자연 친화, 하천생태계 보전, 친수하천 등을 조성하기 위한 대대적인 하천 정비사업이 활발히 진행 중에 있다. 최근 홍수로 인한 제방 붕괴에 대응하기 위한 제방의 안정화 및 개선을 위한 방법으로 기존의 시멘트와 같은 혼합물질을 사용하지 않고 환경 친화적이고 지속 가능한 대안에 대한 수요가 증가되고 있는 추세이며 현재 노후화 된 불안정 제방에 대한 보강대책을 수립해나가는 과정으로써 친환경 신소재를 활용하여 제방을 보호하는 연구가 수행되고 있다. 제방사면에 적용되는 신소재는 바이오폴리머를 활용한 재료로써 공동연구기관 카이스트에서 개발된 환경 친화적인 물질로 미생물에 의해 유도된 고인장 및 인체 무해성 등의 특성을 갖고 있으며 경제적 타당성인 측면에서 시멘트와 비교 분석 되어야 하고 실제 현장에서의 적용 가능성, 신뢰성 및 내구성 검토 등 성능을 보장하기 위한 지속적인 연구가 필요한 상황이다. 이에 본 안동하천실험센터에서는 중규모 제방을 직접 제작하여 수리모형실험을 통한 친환경 신소재 활용 제방의 안정성 및 성능 평가를 실시하였다. 수리실험 조건은 카이스트에서 제시된 레시피를 기반으로 먼저 분말형태의 바이이폴리머를 물과 희석하여 만들어진 바이오폴리머 용액을 흙과 혼합한 뒤 제방표면에 직접 미장작업을 수행하여 실험조건에 따라 일정한 두께(1cm, 3cm, 5cm)로 피복하였다. 이후 월류 붕괴 실험이 가능한 3 - 5일 정도의 양생기간을 거쳐 실험을 진행하였다. 실험결과는 다수의 고프로(GoPro) 및 비디오 카메라 등 다양한 영상장치를 이용하여 픽셀기반의 영상분석기법을 활용한 시간 흐름에 따른 제방 사면에서의 붕괴규모를 산정하여 신소재의 피복 두께에 따른 제체의 붕괴 거동 및 안정성을 평가하였으며, 또한 제방 파괴부에서의 흐름 상황 및 유속이 붕괴 발달에 미치는 영향을 분석하기 위하여 PIV 분석을 실시하였다. 이번 연구의 최종목표는 지속적인 예비실험을 수행하여 월류 및 침투, 파이핑 등 파괴 인자 별 신소재의 성능 개선 및 개발된 새로운 공법에 대한 효과 검토를 통한 최적안을 도출함으로써 향후 실규모 실험실증을 통한 신소재 시공 및 공법에 대한 현장적용 가능성 검증을 거쳐 최종적으로 신소재 제방 공법 설계 기술, 신소재 및 공법 표준안, 제방공법 안정성 평가 가이드라인 등을 제시하고자 하며, 이러한 실험데이터를 축적함으로써 실제 제방 붕괴 시 비상대처계획 수립에 필요한 기초자료로 활용이 가능할 것으로 사료된다.

  • PDF

Research Trend of Biomass-Derived Engineering Plastics (바이오매스 기반 엔지니어링 플라스틱 연구 동향)

  • Jeon, Hyeonyeol;Koo, Jun Mo;Park, Seul-A;Kim, Seon-Mi;Jegal, Jonggeon;Cha, Hyun Gil;Oh, Dongyeop X.;Hwang, Sung Yeon;Park, Jeyoung
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • Sustainable plastics can be mainly categorized into (1) biodegradable plastics decomposed into water and carbon dioxide after use, and (2) biomass-derived plastics possessing the carbon neutrality by utilizing raw materials converted from atmospheric carbon dioxide to biomass. Recently, biomass-derived engineering plastics (EP) and natural nanofiber-reinforced nanocomposites are emerging as a new direction of the industry. In addition to the eco-friendliness of natural resources, these materials are competitive over petroleum-based plastics in the high value-added plastics market. Polyesters and polycarbonates synthesized from isosorbide and 2,5-furandicarboxylic acid, which are representative biomass-derived monomers, are at the forefront of industrialization due to their higher transparency, mechanical properties, thermal stability, and gas barrier properties. Moreover, isosorbide has potential to be applied to super EP material with continuous service temperature over 150 ℃. In situ polymerization utilizing surface hydrophilicity and multi-functionality of natural nanofibers such as nanocellulose and nanochitin achieves remarkable improvements of mechanical properties with the minimal dose of nanofillers. Biomass-derived tough-plastics covered in this review are expected to replace petroleum-based plastics by satisfying the carbon neutrality required by the environment, the high functionality by the consumer, and the accessibility by the industry.

Oil Production Evaluation for Hybrid Method of Low-Salinity Water and Polymer in Carbonate Oil Reservoir (탄산염암 저류층에 저염수주입공법과 폴리머공법의 복합 적용에 따른 오일 생산량 평가)

  • Lee, Yeonkyeong;Kim, Sooyeon;Lee, Wonsuk;Jang, Youngho;Sung, Wonmo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.53-61
    • /
    • 2018
  • Low-salinity water based polymerflooding (LSPF) is one of promising enhanced oil recovery (EOR) method that has the synergetic effect of combining polymer injection method and low-salinity water injection method. In order to maximize EOR efficiency, it is essential to design low-salinity water appropriately considering the properties of polymer. In this aspect, the main purpose of this study is to investigate the effect of pH and $SO_4{^{2-}}$ ion which one of PDI (Potential Determining Ion) on oil production when applying LSPF to carbonate oil reservoir. First, the stability and adsorption of polymer molecule were analyzed in different pH of injection water and $SO_4{^{2-}}$ concentration in injection water. As a result, regardless of pH and $SO_4{^{2-}}$ concentration, when $SO_4{^{2-}}$ ion was contained in injection water, the stability of polymer solution was obtained. However, from the result of polymer retention analysis, in neutral state of injection water, since $SO_4{^{2-}}$ interfered the adsorption of polymer, the adsorption thickness of polymer was thinner as $SO_4{^{2-}}$ concentration was higher. On the other hand, when injection water was acidic as pH 4, the amount of polymer adsorption increased with the injection of polymer solution, so the mobility of polymer solution was greatly lowered. From the results of wettability alteration due to low-salinity water effect, in the case of neutral injection water injected, as $SO_4{^{2-}}$ concentration was increased, more oil which attached on rock surface was detached, altering wettability from oil-wet to water-wet. On the other hand, in acidic condition, due to complex effect of rock dissolution and polymer adsorption, wettability of the entire core system was less altered relatively to neutral condition. Therefore, it was evaluated that better EOR efficiency was obtained when injecting low-salinity water based polymer solution containing high concentration of $SO_4{^{2-}}$ with neutral condition, enhancing the oil production up to 12.3% compared to low-salinity water injection method.

SOI wafer formation by ion-cut process and its characterization (Ion-cut에 의한 SOI웨이퍼 제조 및 특성조사)

  • Woo H-J;Choi H-W;Bae Y-H;Choi W-B
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.91-96
    • /
    • 2005
  • The silicon-on-insulator (SOI) wafer fabrication technique has been developed by using ion-cut process, based on proton implantation and wafer bonding techniques. It has been shown by SRIM simulation that 65keV proton implantation is required for a SOI wafer (200nm SOI, 400nm BOX) fabrication. In order to investigate the optimum proton dose and primary annealing condition for wafer splitting, the surface morphologic change has been observed such as blistering and flaking. As a result, effective dose is found to be in the $6\~9\times10^{16}\;H^+/cm^2$ range, and the annealing at $550^{\circ}C$ for 30 minutes is expected to be optimum for wafer splitting. Direct wafer bonding is performed by joining two wafers together after creating hydrophilic surfaces by a modified RCA cleaning, and IR inspection is followed to ensure a void free bonding. The wafer splitting was accomplished by annealing at the predetermined optimum condition, and high temperature annealing was then performed at $1,100^{\circ}C$ for 60 minutes to stabilize the bonding interface. TEM observation revealed no detectable defect at the SOI structure, and the interface trap charge density at the upper interface of the BOX was measured to be low enough to keep 'thermal' quality.