DOI QR코드

DOI QR Code

Research Trend of Biomass-Derived Engineering Plastics

바이오매스 기반 엔지니어링 플라스틱 연구 동향

  • Jeon, Hyeonyeol (Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Koo, Jun Mo (Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Park, Seul-A (Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Seon-Mi (Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Jegal, Jonggeon (Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Cha, Hyun Gil (Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Oh, Dongyeop X. (Advanced Materials and Chemical Engineering, University of Science and Technology (UST)) ;
  • Hwang, Sung Yeon (Advanced Materials and Chemical Engineering, University of Science and Technology (UST)) ;
  • Park, Jeyoung (Advanced Materials and Chemical Engineering, University of Science and Technology (UST))
  • Received : 2020.03.01
  • Accepted : 2020.03.18
  • Published : 2020.04.10

Abstract

Sustainable plastics can be mainly categorized into (1) biodegradable plastics decomposed into water and carbon dioxide after use, and (2) biomass-derived plastics possessing the carbon neutrality by utilizing raw materials converted from atmospheric carbon dioxide to biomass. Recently, biomass-derived engineering plastics (EP) and natural nanofiber-reinforced nanocomposites are emerging as a new direction of the industry. In addition to the eco-friendliness of natural resources, these materials are competitive over petroleum-based plastics in the high value-added plastics market. Polyesters and polycarbonates synthesized from isosorbide and 2,5-furandicarboxylic acid, which are representative biomass-derived monomers, are at the forefront of industrialization due to their higher transparency, mechanical properties, thermal stability, and gas barrier properties. Moreover, isosorbide has potential to be applied to super EP material with continuous service temperature over 150 ℃. In situ polymerization utilizing surface hydrophilicity and multi-functionality of natural nanofibers such as nanocellulose and nanochitin achieves remarkable improvements of mechanical properties with the minimal dose of nanofillers. Biomass-derived tough-plastics covered in this review are expected to replace petroleum-based plastics by satisfying the carbon neutrality required by the environment, the high functionality by the consumer, and the accessibility by the industry.

지속가능한 플라스틱 산업은 크게 사용 후에 물과 이산화탄소로 분해되어 환경에 악영향을 주지 않는 생분해성 플라스틱과 대기 중의 탄소자원으로 광합성된 바이오매스로부터 전환된 원료를 사용하여 탄소 중립을 실현하는 바이오매스 기반 플라스틱으로 나누어진다. 그중 산업의 새로운 방향으로 바이오매스 기반 엔지니어링 플라스틱(EP) 및 천연 나노섬유를 이용한 강화 나노복합소재가 각광받고 있다. 이들 소재는 천연자원을 활용한다는 친환경성의 이점 외에도 석유계 플라스틱보다 뛰어난 차별화된 고기능성을 부여하여 고부가가치 플라스틱 시장에서의 경쟁력을 가진다. 대표적 바이오매스 기반 단량체인 isosorbide와 2,5-furandicarboxylic acid로부터 제조되는 폴리에스터, 폴리카보네이트 소재는 석유계 대비 높은 투명성, 기계적 특성, 열안정성, 기체 차단성 등으로 산업화의 선두에 있다. 더 나아가서 연속사용온도 150 ℃ 이상의 슈퍼 EP 소재에도 적용될 수 있는 가능성을 보였다. 나노셀룰로오스, 나노키틴 등의 자연계 나노섬유의 표면 친수성, 다관능기를 활용한 in situ 중합법을 이용하여 기존에 보고된 바 없는 기계적 물성 향상을 최소한의 나노필러 함량으로 이루어내었다. 본 총설에서 다루는 바이오매스 기반 tough-플라스틱은 환경이 요구하는 탄소 중립, 소비자가 요구하는 고기능성, 산업이 요구하는 접근성을 모두 만족함으로써 석유계 플라스틱을 대체해 나갈 것으로 기대한다.

Keywords

References

  1. Bioplastics facts and figures; https://docs.european-bioplastics.org/publications/EUBP_Facts_and_figures.pdf, Accessed Feb. 19, 2020.
  2. S. Ebnesajjad, Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications, 1st ed., William Andrew, Oxford, UK (2013).
  3. J. Lee and C. Pai, Trends of environment-friendly bioplastics, Appl. Chem. Eng., 27, 245-251 (2016). https://doi.org/10.14478/ace.2016.1034
  4. Editorial, The future of plastic, Nat. Commun., 9, 2157 (2018). https://doi.org/10.1038/s41467-018-04565-2
  5. X. Feng, A. J. East, W. Hammond, and M. Jaffe, Sugar-based chemicals for environmentally sustainable applications. In: L. Korugic-Karasz (ed.). Contemporary Science of Polymeric Materials, 3-27, American Chemical Society, Washington DC, USA (2010).
  6. M. Irshad, S. Lee, E. Choi, and J. W. Kim, Efficient synthetic routes of biomass-derived platform chemicals, Appl. Chem. Eng., 30, 280-289 (2019). https://doi.org/10.14478/ace.2019.1036
  7. Roquette launches 'world's largest' isosorbide production unit, Additives for Polymers, 2015, 8-9 (2015).
  8. F. Fenouillot, A. Rousseau, G. Colomines, R. Saint-Loup, and J. P. Pascault, Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review, Prog. Polym. Sci., 35, 578-622 (2010). https://doi.org/10.1016/j.progpolymsci.2009.10.001
  9. M. Sajid, X. Zhao, and D. Liu, Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): Recent progress focusing on the chemical-catalytic routes, Green Chem., 20, 5427-5453 (2018). https://doi.org/10.1039/C8GC02680G
  10. H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, and A. Isogai, Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation, Biomacromolecules, 10, 162-165 (2009). https://doi.org/10.1021/bm801065u
  11. T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Cellulose nano-fibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules, 8, 2485-2491 (2007). https://doi.org/10.1021/bm0703970
  12. M. K. Thakur, V. K. Thakur, and R. Prasanth, Nanocellulose-Based Polymer Nanocomposites: An Introduction. In: V. K. Thakur (ed.). Nanocellulose Polymer Nanocomposites: Fundamentals and Applications, Scrivener, Beverly, MA, USA (2014).
  13. K. Oksman, Y. Aitomaki, A. P. Mathew, G. Siqueira, Q. Zhou, S. Butylina, S. Tanpichai, X. Zhou, and S. Hooshmand, Review of the recent developments in cellulose nanocomposite processing, Compos. Part A: Appl. Sci. Manuf., 83, 2-18 (2016). https://doi.org/10.1016/j.compositesa.2015.10.041
  14. A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, and S. Goswami, Commercial application of cellulose nano-composites - A review, Biotechnol. Rep., 21, e00316 (2019). https://doi.org/10.1016/j.btre.2019.e00316
  15. R. Auras, L.-T. Lim, S. E. M. Selke, and H. Tsuji, Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, 1st ed., John Wiley & Sons, Hoboken, New Jersey, USA (2011).
  16. M. H. Ryu, J. Park, D. X. Oh, S. Y. Hwang, H. Jeon, S. S. Im, and J. Jegal, Precisely controlled two-step synthesis of cellulose-graft-poly(l-lactide) copolymers: Effects of graft chain length on thermal behavior, Polym. Degrad. Stabil., 142, 226-233 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.07.008
  17. L. Dammer, M. Carus, A. Raschka, and L. Scholz, Market Developments of and Opportunities for Biobased Products and Chemicals, nova-institute for Ecology and Innovation, Hurth, Germany (2013).
  18. Kaneka enhances its biodegradable plastic manufacturing capacity; https://www.kaneka.co.jp/en/service/news/nr20180824/, Accessed Feb. 19, 2020.
  19. G.-Q. Chen, A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry, Chem. Soc. Rev., 38, 2434-2446 (2009). https://doi.org/10.1039/b812677c
  20. J. Jian, Z. Xiangbin, and H. Xianbo, An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate) - PBAT, Adv. Ind. Eng. Polym. Res., 3, 19-26 (2020). https://doi.org/10.1016/j.aiepr.2020.01.001
  21. H. Bai, S. Deng, D. Bai, Q. Zhang, and Q. Fu, Recent advances in processing of stereocomplex-type polylactide, Macromol. Rapid Commun., 38, 1700454 (2017). https://doi.org/10.1002/marc.201700454
  22. K. Masutani, K. Kobayashi, Y. Kimura, and C. W. Lee, Properties of stereo multi-block polylactides obtained by chain-extension of stereo tri-block polylactides consisting of poly(L-lactide) and poly(D-lactide), J. Polym. Res., 25, 74 (2018). https://doi.org/10.1007/s10965-018-1444-3
  23. S.-J. Gu, D.-S. Yoo, and M.-S. Bang, Synthesis and properties of cholesteric liquid crystalline polymers with isosorbide group, Appl. Chem. Eng., 28, 230-236 (2017). https://doi.org/10.14478/ace.2017.1005
  24. New Bio-based Engineering Plastic $DURABIO^{TM}$; https://www.m-chemical.co.jp/en/products/departments/mcc/sustainable/product/1201026_7964.html, Accessed Feb 19, 2020.
  25. E. de Jong, M. A. Dam, L. Sipos, and G. J. M. Gruter, Furandicarboxylic Acid (FDCA), A Versatile Building Block for a Very Interesting Class of Polyesters. In: P. B. Smith and R. A. Gross (eds.). Biobased Monomers, Polymers, and Materials, 1-13, American Chemical Society, Washington DC, USA (2012).
  26. S. K. Burgess, O. Karvan, J. R. Johnson, R. M. Kriegel, and W. J. Koros, Oxygen sorption and transport in amorphous poly(ethylene furanoate), Polymer, 55, 4748-4756 (2014). https://doi.org/10.1016/j.polymer.2014.07.041
  27. H. T. H. Nguyen, P. Qi, M. Rostagno, A. Feteha, and S. A. Miller, The quest for high glass transition temperature bioplastics, J. Mater. Chem. A, 6, 9298-9331 (2018). https://doi.org/10.1039/C8TA00377G
  28. PEF - the polymer for the future; https://www.avantium.com/wp-content/uploads/2019/11/Article-PEF-Planet-Insider-issue-09-2019-page-40.pdf, Accessed Feb 19, 2020.
  29. N. Poulopoulou, N. Kasmi, D. N. Bikiaris, D. G. Papageorgiou, G. Floudas, and G. Z. Papageorgiou, Sustainable polymers from renewable resources: Polymer blends of furan-based polyesters, Macromol. Mater. Eng., 303, 1800153 (2018). https://doi.org/10.1002/mame.201800153
  30. L. Alaerts, M. Augustinus, and K. Van Acker, Impact of bio-based plastics on current recycling of plastics, Sustainability, 10, 1487 (2018). https://doi.org/10.3390/su10051487
  31. H. T. Kim, J. K. Kim, H. G. Cha, M. J. Kang, H. S. Lee, T. U. Khang, E. J. Yun, D.-H. Lee, B. K. Song, S. J. Park, J. C. Joo, and K. H. Kim, Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET, ACS Sustain. Chem. Eng., 7, 19396-19406 (2019). https://doi.org/10.1021/acssuschemeng.9b03908
  32. J. Pang, M. Zheng, R. Sun, A. Wang, X. Wang, and T. Zhang, Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET, Green Chem., 18, 342-359 (2016). https://doi.org/10.1039/C5GC01771H
  33. T. Kim, J. M. Koo, M. H. Ryu, H. Jeon, S.-M. Kim, S.-A. Park, D. X. Oh, J. Park, and S. Y. Hwang, Sustainable terpolyester of high Tg based on bio heterocyclic monomer of dimethyl furan-2,5-dicarboxylate and isosorbide, Polymer, 132, 122-132 (2017). https://doi.org/10.1016/j.polymer.2017.10.052
  34. S. Chatti, G. Schwarz, and H. R. Kricheldorf, Cyclic and noncyclic polycarbonates of isosorbide (1,4:3,6-dianhydro-d-glucitol), Macromolecules, 39, 9064-9070 (2006). https://doi.org/10.1021/ma0606051
  35. J. H. Yoon, S.-M. Kim, Y. Eom, J. M. Koo, H.-W. Cho, T. J. Lee, K. G. Lee, H. J. Park, Y. K. Kim, H.-J. Yoo, S. Y. Hwang, J. Park, and B. G. Choi, Extremely fast self-healable bio-based supramolecular polymer for wearable real-time sweat-monitoring sensor, ACS Appl. Mater. Interfaces, 11, 46165-46175 (2019). https://doi.org/10.1021/acsami.9b16829
  36. J. H. Yoon, S.-M. Kim, H. J. Park, Y. K. Kim, D. X. Oh, H.-W. Cho, K. G. Lee, S. Y. Hwang, J. Park, and B. G. Choi, Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids, Biosens. Bioelectron., 150, 111946 (2020). https://doi.org/10.1016/j.bios.2019.111946
  37. S.-A. Park, J. Choi, S. Ju, J. Jegal, K. M. Lee, S. Y. Hwang, D. X. Oh, and J. Park, Copolycarbonates of bio-based rigid isosorbide and flexible 1,4-cyclohexanedimethanol: Merits over bisphenol-A based polycarbonates, Polymer, 116, 153-159 (2017). https://doi.org/10.1016/j.polymer.2017.03.077
  38. S. Kind, S. Neubauer, J. Becker, M. Yamamoto, M. Volkert, G. v. Abendroth, O. Zelder, and C. Wittmann, From zero to hero - Production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum, Metab. Eng., 25, 113-123 (2014). https://doi.org/10.1016/j.ymben.2014.05.007
  39. H. Y. Kim, M. H. Ryu, D. S. Kim, B. K. Song, and J. Jegal, Preparation and characterization of nylon 6-morpholinone random copolymers based on ${\varepsilon}$-caprolactam and morpholinone, Polym-Korea, 38, 714-719 (2014). https://doi.org/10.7317/pk.2014.38.6.714
  40. H. T. Kim, K.-A. Baritugo, Y. H. Oh, S. M. Hyun, T. U. Khang, K. H. Kang, S. H. Jung, B. K. Song, K. Park, I.-K. Kim, M. O. Lee, Y. Kam, Y. T. Hwang, S. J. Park, and J. C. Joo, Metabolic engineering of corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510, ACS Sustain. Chem. Eng., 6, 5296-5305 (2018). https://doi.org/10.1021/acssuschemeng.8b00009
  41. Arkema and bio-based products; https://www.arkema.com/en/arkema-group/innovation/bio-based-products/, Accessed Feb 19, 2020.
  42. K. Luo, Y. Wang, J. Yu, J. Zhu, and Z. Hu, Semi-bio-based aromatic polyamides from 2,5-furandicarboxylic acid: Toward high-performance polymers from renewable resources, RSC Adv., 6, 87013-87020 (2016). https://doi.org/10.1039/C6RA15797A
  43. X. Ji, Z. Wang, J. Yan, and Z. Wang, Partially bio-based polyimides from isohexide-derived diamines, Polymer, 74, 38-45 (2015). https://doi.org/10.1016/j.polymer.2015.07.051
  44. L. Jasinska, M. Villani, J. Wu, D. van Es, E. Klop, S. Rastogi, and C. E. Koning, Novel, fully biobased semicrystalline polyamides, Macromolecules, 44, 3458-3466 (2011). https://doi.org/10.1021/ma200256v
  45. J. W. Labadie, J. L. Hedrick, and M. Ueda, Poly(aryl ether) Synthesis. In: J. L. Hedrick and J. W. Labadie (eds.). Step-Growth Polymers for High-Performance Materials, American Chemical Society, Washington DC, USA (1996).
  46. J. Park, M. Seo, H. Choi, and S. Y. Kim, Synthesis and physical gelation induced by self-assembly of well-defined poly(arylene ether sulfone)s with various numbers of arms, Polym. Chem., 2, 1174-1179 (2011). https://doi.org/10.1039/c0py00418a
  47. M. G. Dhara and S. Banerjee, Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups, Prog. Polym. Sci., 35, 1022-1077 (2010). https://doi.org/10.1016/j.progpolymsci.2010.04.003
  48. J. Park, J. Kim, M. Seo, J. Lee, and S. Y. Kim, Dual-mode fluorescence switching induced by self-assembly of well-defined poly(arylene ether sulfone)s containing pyrene and amide moieties, Chem. Commun., 48, 10556-10558 (2012). https://doi.org/10.1039/c2cc35804b
  49. H. B. Abderrazak, A. Fildier, H. B. Romdhane, S. Chatti, and H. R. Kricheldorf, Synthesis of new poly(ether ketone)s derived from biobased diols, Macromol. Chem. Phys., 214, 1423-1433 (2013). https://doi.org/10.1002/macp.201300015
  50. S. Chatti, M. A. Hani, K. Bornhorst, and H. R. Kricheldorf, Poly(ether sulfone) of isosorbide, isomannide and isoidide, High Perform. Polym., 21, 105-118 (2009). https://doi.org/10.1177/0954008308088296
  51. S.-A. Park, H. Jeon, H. Kim, S.-H. Shin, S. Choy, D. S. Hwang, J. M. Koo, J. Jegal, S. Y. Hwang, J. Park, and D. X. Oh, Sustainable and recyclable super engineering thermoplastic from biorenewable monomer, Nat. Commun., 10, 2601 (2019). https://doi.org/10.1038/s41467-019-10582-6
  52. S.-A. Park, C. Im, D. X. Oh, S. Y. Hwang, J. Jegal, J. H. Kim, Y.-W. Chang, H. Jeon, and J. Park, Study on the synthetic characteristics of biomass-derived isosorbide-based poly(arylene ether ketone)s for sustainable super engineering plastic, Molecules, 24, 2492 (2019). https://doi.org/10.3390/molecules24132492
  53. J. Njuguna, K. Pielichowski, and S. Desai, Nanofiller-reinforced polymer nanocomposites, Polym. Advan. Technol., 19, 947-959 (2008). https://doi.org/10.1002/pat.1074
  54. S. Y. Hwang, E. S. Yoo, and S. S. Im, The synthesis of copolymers, blends and composites based on poly(butylene succinate), Polym. J., 44, 1179-1190 (2012). https://doi.org/10.1038/pj.2012.157
  55. J. M. Koo, H. Kim, M. Lee, S.-A. Park, H. Jeon, S.-H. Shin, S.-M. Kim, H. G. Cha, J. Jegal, B.-S. Kim, B. G. Choi, S. Y. Hwang, D. X. Oh, and J. Park, Nonstop monomer-to-aramid nanofiber synthesis with remarkable reinforcement ability, Macromolecules, 52, 923-934 (2019). https://doi.org/10.1021/acs.macromol.8b02391
  56. A. Dasari, Z. Z. Yu, and Y.-W. Mai, Polymer Nanocomposites: Towards Multi-Functionality, 1st ed., Springer, London, UK (2016).
  57. D. R. Paul and L. M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer, 49, 3187-3204 (2008). https://doi.org/10.1016/j.polymer.2008.04.017
  58. F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview, J. Compos. Mater., 40, 1511-1575 (2006). https://doi.org/10.1177/0021998306067321
  59. P. Sripaiboonkij, N. Sripaiboonkij, W. Phanprasit, and M. S. Jaakkola, Respiratory and skin health among glass microfiber production workers: A cross-sectional study, Environ. Health, 8, 36 (2009). https://doi.org/10.1186/1476-069X-8-36
  60. L. Zhong and X. Peng, Biorenewable Nanofiber and Nanocrystal: Renewable Nanomaterials for Constructing Novel Nanocomposites. In: V. K. Thakur, M. K. Thakur and M. R. Kessler (eds.). Handbook of Composites from Renewable Materials, John Wiley & Sons, Hoboken, New Jersey, USA (2017).
  61. Z. Hanif, H. Jeon, T. H. Tran, J. Jegal, S.-A. Park, S.-M. Kim, J. Park, S. Y. Hwang, and D. X. Oh, Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion, J. Polym. Res., 25, 191 (2017).
  62. T. Kim, T. H. Tran, S. Y. Hwang, J. Park, D. X. Oh, and B.-S. Kim, Crab-on-a-Tree: All biorenewable, optical and radio frequency transparent barrier nanocoating for food packaging, ACS Nano, 13, 3796-3805 (2019). https://doi.org/10.1021/acsnano.8b08522
  63. H.-L. Nguyen, Z. Hanif, S.-A. Park, B. G. Choi, T. H. Tran, D. S. Hwang, J. Park, S. Y. Hwang, and D. X. Oh, Sustainable boron nitride nanosheet-reinforced cellulose nanofiber composite film with oxygen barrier without the cost of color and cytotoxicity, Polymers, 10, 501 (2018). https://doi.org/10.3390/polym10050501
  64. H.-L. Nguyen, S. Ju, L. T. Hao, T. H. Tran, H. G. Cha, Y. J. Cha, J. Park, S. Y. Hwang, D. K. Yoon, D. S. Hwang, and D. X. Oh, The renewable and sustainable conversion of chitin into a chiral nitrogen-doped carbon-sheath nanofiber for enantioselective adsorption, ChemSusChem, 12, 3236-3242 (2019). https://doi.org/10.1002/cssc.201901176
  65. T. H. Tran, H.-L. Nguyen, D. S. Hwang, J. Y. Lee, H. G. Cha, J. M. Koo, S. Y. Hwang, J. Park, and D. X. Oh, Five different chitin nanomaterials from identical source with different advantageous functions and performances, Carbohydr. Polym., 205, 392-400 (2019). https://doi.org/10.1016/j.carbpol.2018.10.089
  66. H. S. Yu, H. Park, T. H. Tran, S. Y. Hwang, K. Na, E. S. Lee, K. T. Oh, D. X. Oh, and J. Park, Poisonous caterpillar-inspired chitosan nanofiber enabling dual photothermal and photodynamic tumor ablation, Pharmaceutics, 11, 258 (2019). https://doi.org/10.3390/pharmaceutics11060258
  67. T. H. Tran, H.-L. Nguyen, L. T. Hao, H. Kong, J. M. Park, S.-H. Jung, H. G. Cha, J. Y. Lee, H. Kim, S. Y. Hwang, J. Park, and D. X. Oh, A ball milling-based one-step transformation of chitin biomass to organo-dispersible strong nanofibers passing highly time and energy consuming processes, Int. J. Biol. Macromol., 125, 660-667 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.086
  68. A. Arias, M.-C. Heuzey, M. A. Huneault, G. Ausias, and A. Bendahou, Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites, Cellulose, 22, 483-498 (2015). https://doi.org/10.1007/s10570-014-0476-z
  69. N. Lin, Y. Chen, F. Hu, and J. Huang, Mechanical reinforcement of cellulose nanocrystals on biodegradable microcellular foams with melt-compounding process, Cellulose, 22, 2629-2639 (2015). https://doi.org/10.1007/s10570-015-0684-1
  70. A. Nicharat, J. Sapkota, C. Weder, and E. J. Foster, Melt processing of polyamide 12 and cellulose nanocrystals nanocomposites, J. Appl. Polym. Sci., 132, 42752 (2015).
  71. T. Kim, H. Jeon, J. Jegal, J. H. Kim, H. Yang, J. Park, D. X. Oh, and S. Y. Hwang, Trans crystallization behavior and strong reinforcement effect of cellulose nanocrystals on reinforced poly(butylene succinate) nanocomposites, RSC Adv., 8, 15389-15398 (2018). https://doi.org/10.1039/C8RA01868E
  72. J. M. Koo, J. Kang, S.-H. Shin, J. Jegal, H. G. Cha, S. Choy, M. Hakkarainen, J. Park, D. X. Oh, and S. Y. Hwang, Biobased thermoplastic elastomer with seamless 3D-printability and superior mechanical properties empowered by in-situ polymerization in the presence of nanocellulose, Compos. Sci. Technol., 185, 107885 (2020). https://doi.org/10.1016/j.compscitech.2019.107885
  73. S.-A. Park, Y. Eom, H. Jeon, J. M. Koo, E. S. Lee, J. Jegal, S. Y. Hwang, D. X. Oh, and J. Park, Preparation of synergistically reinforced transparent bio-polycarbonate nanocomposites with highly dispersed cellulose nanocrystals, Green Chem., 21, 5212-5221 (2019). https://doi.org/10.1039/C9GC02253H
  74. L. T. Hao, Y. Eom, T. H. Tran, J. M. Koo, J. Jegal, S. Y. Hwang, D. X. Oh, and J. Park, Rediscovery of nylon upgraded by interactive biorenewable nano-fillers, Nanoscale, 12, 2393-2405 (2020). https://doi.org/10.1039/C9NR08091K