• Title/Summary/Keyword: 치형

Search Result 236, Processing Time 0.026 seconds

A Study on Optimization of Tooth Micro-geometry for a Helical Gear Pair (헬리컬 기어의 치형최적화에 관한 연구)

  • Zhang, Qi;Kang, Jae-Hwa;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.70-75
    • /
    • 2011
  • Nowadays, modern gearboxes are characterized by high torque load demands, low running noise and compact design. Also durability of gearbox is specially a major issue for the industry. For the gearbox which used in wind turbine, gear transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. In this paper, tooth modification for the high speed stage is used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox is firstly modeled in Romax software, and then the various combination analysis of the tooth modification is presented by using Windows LDP software, and the prediction of transmission error under the loaded torque for the helical gear pair is investigated, the transmission error, contact stress, root stress and load distribution are also calculated and compared before and after tooth modification under one torque condition. The simulation result shows that the transmission error and stress under the loads can be minimized by the appropriate tooth modification.

Design and Meshing Analysis of a Non-involute Internal Gear for Counters (계수기용 비인벌류트 치형의 내치차 설계와 물림해석)

  • Lee, Sung-Chul
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.212-217
    • /
    • 2014
  • A counter gear transmits the rotation angle, so the angular velocity ratio of the gear does not necessarily need to be constant in the meshing process. As a pinion has a small number of teeth when combined with an internal gear for counters, tooth interference can occur with the use of an involute curve. This paper introduces circular arcs that represent a tooth profile and fillet for the profile design of a pinion through the combination of arcs with lines. The straight line of a rack tooth represents the profile of a mating internal gear. Thus, the circular arc and line maintain contact during the rotation of the counter gear. This paper presents an analysis of the meshing of the circular arc tooth and rack tooth along with the properties of the counter gear, such as the change in rotational velocity and amount of backlash. The contact ratio of the counter gear is 1 because the tooth contact occurs between circular arcs and line. The initial position of tooth contact, which denotes the simultaneous contact of two teeth, is found. As the rotation of the pinion, only one tooth keeps the contact situation. This meshing property is analyzed by the geometrical constraints of the tooth profile in contact and the results are presented as graphical diagrams in which tooth-arc movements are superimposed.

A Curvic-Coupling Development for the Turbopump Application (터보펌프용 커빅커플링의 개발)

  • Jeong, Eun-Hwan;Yoon, Suk-Hwan;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.22-25
    • /
    • 2009
  • Development of a curvic-coupling was presented in this paper. The research covers design, structural analysis, hot-temperature-torsion-test, curvic-coupling applied proto-type turbine disk manufacturing, and assembly test of a curvic-coupling rotor system for the turbopump application. Curvic-coupling was designed based on the Gleason-standard-tooth shape. The load capability of the designed curvic coupling was validated by the structural analysis and hot-temperature-torsion-test. A proto-type turbine disk which had adopted designed curvic-coupling was manufactured, assembled and tested to reveal that shaft-disk assembly run-outs in axial and radial directions were much smaller than the design requirements. The development will be finalized after spin test of shaft-disk assembly in near future.

  • PDF

Study on Empirical Gear Profile Micro-modifications for Gear Transmission (기어미션용 실증적 기어치형수정에 관한 연구)

  • Zhang, Qi;Wang, Jiu-Gen;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.54-62
    • /
    • 2017
  • When gears mesh, shock and noise are produced as results of tooth error and tooth deformation under load. Transmission error (TE) is the most important cause of gear noise and vibration because TEs affect the changes of the force and the speed of gears. Gear tooth modification research plays a positive role in reducing TE and improving the design level and transmission performance of transmission systems. In high-precision manufacturing gear, gear tooth modification is also commonly used to reduce noise in practical applications. In order to study the accuracy of gear transmission, some empirical gear profile micro-modifications are introduced, and a helical gear pair is modeled and analyzed in RomaxDesigner software to investigate the utility of these modification methods. Some of these will be selected as experimental proposals for gear pairs, and these manufactured gears will be tested and compared in a semi-anechoic room later. The final purpose of this study is to find reasonable and convenient empirical formulae to facilitate improved gear production.

A study on the treatment of a max-value cost function in parametric optimization (매개변수 종속 최적화에서 최대치형 목적함수 처리에 관한 연구)

  • Kim, Min-Soo;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1561-1570
    • /
    • 1997
  • This study explores the treatment of the max-value cost function over a parameter interval in parametric optimization. To avoid the computational burden of the transformation treatment using an artificial variable, a direct treatment of the original max-value cost function is proposed. It is theoretically shown that the transformation treatment results in demanding an additional equality constraint of dual variables as a part of the Kuhn-Tucker necessary conditions. Also, it is demonstrated that the usability and feasibility conditions on the search direction of the transformation treatment retard convergence rate. To investigate numerical performances of both treatments, typical optimization algorithms in ADS are employed to solve a min-max steady-state response optimization. All the algorithm tested reveal that the suggested direct treatment is more efficient and stable than the transformation treatment. Also, the better performing of the direct treatment over the transformation treatment is clearly shown by constrasting the convergence paths in the design space of the sample problem. Six min-max transient response optimization problems are also solved by using both treatments, and the comparisons of the results confirm that the performances of the direct treatment is better than those of the tranformation treatment.

Modeling of Transmission Error of A Gear Pair with Modified Teeth (치형수정된 기어쌍의 치합전달오차 모델링)

  • 주상훈;노오현;정동현;배명호;박노길
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.841-848
    • /
    • 1998
  • In the gear manufacturing, tooth modification is usually applied for the prevention of tooth impact during the loading. In contrary, tooth profile error causes amplifying the whine noise which is cumbersome to reduce in the automobile gear box. So optimum quantity of the modifications must be obtained for the good performance in the vibrational sense. In this paper, a formulation to define the tooth curve by considering the profile manufacturing error and loading deformation of the gear tooth is suggested and the transmission error and loading deformation of the gear tooth is suggested and the transmission error with modified tooth in the gear system is evaluated. A pair of gear set is mathematically modelled. The equivalent excitation in the gear vibratonal model is formulated. For the experimental evaluaton on the derived transmission error function, a simple geared system is set up in which the gears are designed to give pre-designed tooth profile modification and manufactured by CNC Wire Cutting Machine. Under slow speed operaton, the transmission error of the gear pair is measured by using two rotational laser vibrometers, compared with the calculated one of which the result shows good agreement.

  • PDF

A Study on Dynamic Characteristics of Gear-System (기어-시스템의 동특성에 대한 연구)

  • Lee, Hyoung-Woo;Park, No-Gill
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.111-117
    • /
    • 2005
  • The vibration problems associated with gear coupled rotors have been the focus of much engineering work. These systems are complex and difficult to analyze in that they have the problems associated with conventional rotors plus those additional problems associated with the gear couplings. This paper examines the problems peculiar to the gear mesh. Because of the meshing action of gears, the elasticity of the gear teeth introduces time-varying stiffness coefficients into the governing equations of motion. This means that system response must be thought of in terms of Mathieu-type equations, where multiple-frequency response occur due to the periodic coefficients. The meshing action of the gears also couples the lateral and torsional gear motions. Gear errors, such as tooth profile and spacing errors, produce forces and torque that excite the system at multiple frequencies, some of which are much higher than shaft rotational speed. To investigate how to the time-varying stiffness in the gear teeth and the gear errors act one the dynamic response of the gear coupled rotors, a three-dimensional dynamic model with lateral-tortional oscillation is developed. The harmonic balance technique is employed to solve this mathieu-type problem.

A Case Study on the Investigation of Vehicle Fire According to Drive Train (구동방식에 따른 승용차 엔진룸 화재조사 기법에 관한 사례 연구)

  • Son, J.B.;Kwon, H.H.;Lee, J.I.;Choi, D.M.
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.11 no.1
    • /
    • pp.83-88
    • /
    • 2008
  • The fire outbreaking origin of vehicle fire would be classified into two positions such as engine room and passenger room of vehicle. As a firewall is installed between engine room and passenger room, in case of engine fire, it could be assumed that it takes about 10 to 15 minutes for the fire to spread into passenger room There are two different vehicle engine layouts such as transversal and lateral layout, and the fire spreading process and resulting damage patterns on left and right side dash-panel are different depending on the engine layouts. In accordance, the first thing to do for correct and speedy finding of the fire origin place is considered to be an investigation into the dash-panel damage in case of engine room fire investigation.

  • PDF

A Study on the Micro Machining Technology of Mold and Die (미세 절삭에 의한 금형 가공기술 개발)

  • Lee E. S.;Je T. J.;Lee S. W.;Lee D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.231-238
    • /
    • 2002
  • 미세 절삭에 의한 마이크로 형상가공 및 이를 이용한 미세금형 가공기술개발을 위하여 절삭 공구를 이용한 기계적 미세 가공법에 대한 고찰과 더불어 shaping, end-milling, drilling 등의 가공이 가능한 기계적 미세 가공시스템을 구성하고 이를 이용한 미세 치형 그루브와 미세 격벽 등 미세 형상 구조의 금형 개발을 위한 가공실험을 수행하였다. 본 실험에서는 먼저 shaping 방식으로 세 종류의 다이아몬드 바이트를 사용하여 알루미늄, PMMA, Nickel, 황동 등의 소재에 pitch $150{\mu}m$, 높이 $8{\mu}m$ 내외의 미세 치형의 금형 코어를 가공하였고, 다음으로 Z축에 air spindle을 설치하여 $\phi0.2mm$의 end-mill(WC)을 사용하여 황동 소재에 깊이 $200{\mu}m$, 폭 $200{\mu}m,\;100{\mu}m,\;50{\mu}m,\;30{\mu}m$의 두께 변화를 주어 미세 격벽에 대한 가공실험을 하였다. 미세 구멍가공실험으로는 drilling 전용장비를 구성하여 $\phi0.6\~0.15mm$의 drill공구로 SM45C와 세라믹$(Si_3N_4-BN)$ 소재에 스텝이송방식에 의한 미세 구멍 가공 실험을 실시하였다.

  • PDF

Application of CAD/CAM System to the Manufacturing and the Verification of Straight Bevel Gear with Crown Teeth (크라운 치형을 갖는 직선 베벨기어의 제작 및 검증을 위한 CAD/CAM 시스템 활용)

  • Lee, Kang-Hee;Park, Yong-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.270-275
    • /
    • 2008
  • The straight bevel gear for automobile part has been manufactured by the cold forging instead of the gear machining tool for the mass production. The application to CAD/CAM system has been necessary in order to develop the precision product quickly by forging through the minimization of trial and error and confirm the reproducibility. In the study, the straight bevel gear with the crown teeth has been modelled by the CAD/CAM system. The master gear after the gearing test has been machined after the modelling, NC data generation and verification. The die for forging and the jig for machining has been manufactured using the master gear.