• Title/Summary/Keyword: 초등학교 1학년 수학과 교육과정

Search Result 188, Processing Time 0.027 seconds

The Effect of Essay Writing-Centered Mathematics Teaching on Problem Solving and Mathematical Disposition (서술형 수학 쓰기 수업이 초등학생의 문제해결 및 수학적 성향에 미치는 효과)

  • Kim, Hyosun;Oh, Youngyoul
    • Communications of Mathematical Education
    • /
    • v.28 no.1
    • /
    • pp.131-154
    • /
    • 2014
  • The purpose of this study was to examine the effect of essay writing-centered mathematics instruction on problem solving and mathematical deposition in the elementary school. For the present study, two 6th grade classes with equivalent achievement in terms of problem solving and mathematical disposition based on the pretest. A total of 15 mathematics lessons focused on writing activities were administered to the experiment group for two months, while the textbook-based traditional lessons were given to the comparison group. Both quantitative and qualitative methods were adopted to analyze the data. The results of the present study showed that essay writing-centered mathematics teaching is statistically superior that the textbook-based mathematics teaching with respect to students' problem solving and mathematical disposition. In addition, it was evidenced that essay writing-centered mathematics instruction makes an influence on students' perceptions toward essay-based assessment in a positive way.

Exploring Changes in Multi-ethnic Students' Mathematics Achievement Motivation : A Longitudinal Study using Expectancy-Value Theory (다문화가정 학생의 수학학업성취 동기 변화 연구: 기대가치 이론에 따른 종단연구)

  • Cho, Eunhye;Hwang, Sunghwan
    • The Mathematical Education
    • /
    • v.58 no.1
    • /
    • pp.101-120
    • /
    • 2019
  • The goal of this study was to apply an expectancy-value model(Wigfield & Eccles, 2000) to explain changes in six multi-ethnic students' achievement motivation in mathematics during sixth (2012) to eighth (2014) grades. In order to achieve this goal, we used narrative research methods. Although individual students' achievement motivation and mathematics related life experiences differed, there are some common factors influencing their motivation development, especially (a) roles played by parents and teachers; (b) assessment of peers' competencies; (c) past learning experiences related to mathematics curriculum; (d) perception of the relationship between mathematics competency and other subjects; (e) home backgrounds; and (f) perceived task values. In this study, we achieved some insight into why some multi-ethnic students are willing to study hard to get good scores while others are uninterested in mathematics, and why some multi-ethnic students are likely to pursue new mathematical tasks and persist despite challenges, while others easily give up studying mathematics in the face of adversity. We argue that in order to increase and sustain multi-ethnic students' achievement motivation, educators and parents should recognize that motivation is contextually formulated in the intersection of current people, time, and space, not a personal entity formed in an individual's mind. The findings of this study shed light on the development of achievement motivation and can inform efforts to develop multi-ethnic students' positive motivation, which might influence their mathematics achievement and success in school.

Semiotic mediation through technology: The case of fraction reasoning (초등학생들의 측정으로서 분수에 대한 이해 : 공학도구를 활용한 기호적 중재)

  • Yeo, Sheunghyun
    • The Mathematical Education
    • /
    • v.60 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • This study investigates students' conceptions of fractions from a measurement approach while providing a technological environment designed to support students' understanding of the relationships between quantities and adjustable units. 13 third-graders participated in this study and they were involved in a series of measurement tasks through task-based interviews. The tasks were devised to investigate the relationship between units and quantity through manipulations. Screencasting videos were collected including verbal explanations and manipulations. Drawing upon the theory of semiotic mediation, students' constructed concepts during interviews were coded as mathematical words and visual mediators to identify conceptual profiles using a fine-grained analysis. Two students changed their strategies to solve the tasks were selected as a representative case of the two profiles: from guessing to recursive partitioning; from using random units to making a relation to the given unit. Dragging mathematical objects plays a critical role to mediate and formulate fraction understandings such as unitizing and partitioning. In addition, static and dynamic representations influence the development of unit concepts in measurement situations. The findings will contribute to the field's understanding of how students come to understand the concept of fraction as measure and the role of technology, which result in a theory-driven, empirically-tested set of tasks that can be used to introduce fractions as an alternative way.

A Study of a Teaching Plan for Gifted Students in Elementary School Mathematics Classes (일반학급에서의 초등 수학 영재아 지도 방안 연구)

  • Kim, Myeong-Ja;Shin, Hang-Kyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.2
    • /
    • pp.163-192
    • /
    • 2009
  • Currently, our country operates gifted education only as a special curriculum, which results in many problems, e.g., there are few beneficiaries of gifted education, considerable time and effort are required to gifted students, and gifted students' educational needs are ignored during the operation of regular curriculum. In order to solve these problems, the present study formulates the following research questions, finding it advisable to conduct gifted education in elementary regular classrooms within the scope of the regular curriculum. A. To devise a teaching plan for the gifted students on mathematics in the elementary school regular classroom. B. To develop a learning program for the gifted students in the elementary school regular classroom. C. To apply an in-depth learning program to gifted students in mathematics and analyze the effectiveness of the program. In order to answer these questions, a teaching plan was provided for the gifted students in mathematics using a differentiating instruction type. This type was developed by researching literature reviews. Primarily, those on characteristics of gifted students in mathematics and teaching-learning models for gifted education. In order to instruct the gifted students on mathematics in the regular classrooms, an in-depth learning program was developed. The gifted students were selected through teachers' recommendation and an advanced placement test. Furthermore, the effectiveness of the gifted education in mathematics and the possibility of the differentiating teaching type in the regular classrooms were determined. The analysis was applied through an in-depth learning program of selected gifted students in mathematics. To this end, an in-depth learning program developed in the present study was applied to 6 gifted students in mathematics in one first grade class of D Elementary School located in Nowon-gu, Seoul through a 10-period instruction. Thereafter, learning outputs, math diaries, teacher's checklist, interviews, video tape recordings the instruction were collected and analyzed. Based on instruction research and data analysis stated above, the following results were obtained. First, it was possible to implement the gifted education in mathematics using a differentiating instruction type in the regular classrooms, without incurring any significant difficulty to the teachers, the gifted students, and the non-gifted students. Specifically, this instruction was effective for the gifted students in mathematics. Since the gifted students have self-directed learning capability, the teacher can teach lessons to the gifted students individually or in a group, while teaching lessons to the non-gifted students. The teacher can take time to check the learning state of the gifted students and advise them, while the non-gifted students are solving their problems. Second, an in-depth learning program connected with the regular curriculum, was developed for the gifted students, and greatly effective to their development of mathematical thinking skills and creativity. The in-depth learning program held the interest of the gifted students and stimulated their mathematical thinking. It led to the creative learning results, and positively changed their attitude toward mathematics. Third, the gifted students with the most favorable results who took both teacher's recommendation and advanced placement test were more self-directed capable and task committed. They also showed favorable results of the in-depth learning program. Based on the foregoing study results, the conclusions are as follows: First, gifted education using a differentiating instruction type can be conducted for gifted students on mathematics in the elementary regular classrooms. This type of instruction conforms to the characteristics of the gifted students in mathematics and is greatly effective. Since the gifted students in mathematics have self-directed learning capabilities and task-commitment, their mathematical thinking skills and creativity were enhanced during individual exploration and learning through an in-depth learning program in a differentiating instruction. Second, when a differentiating instruction type is implemented, beneficiaries of gifted education will be enhanced. Gifted students and their parents' satisfaction with what their children are learning at school will increase. Teachers will have a better understanding of gifted education. Third, an in-depth learning program for gifted students on mathematics in the regular classrooms, should conform with an instructing and learning model for gifted education. This program should include various and creative contents by deepening the regular curriculum. Fourth, if an in-depth learning program is applied to the gifted students on mathematics in the regular classrooms, it can enhance their gifted abilities, change their attitude toward mathematics positively, and increase their creativity.

  • PDF

Splitting operation for composite units and construction of fractions as multipliers (합성 단위에 대한 스플리팅 조작과 분수 곱셈 연산자 개념의 이해)

  • Yoo, Jin Young;Shin, Jaehong
    • The Mathematical Education
    • /
    • v.62 no.1
    • /
    • pp.1-21
    • /
    • 2023
  • The purpose of this study is to explore how the student, who interiorized three levels of units, constructed fractions as multipliers by analyzing her ways of conceiving improper fractions with three levels of units and coordinating two three-levels-of-units structures. Among the data collected from our teaching experiment with two 4th grade students meeting 13 times for three months, we focus on how Seyeon, one of the participating students, wrote numerical expressions in the form of "× fraction" for the given situations using her splitting operation for composite units. Given the importance of splitting operation for composite units for the construction of fractions as multipliers, implications for further research are discussed.

A Case Study on the Teaching Mathematics Carried by a Researcher as a Parent of One Elementary School Child - Focused on the area of figures in the 5th grade - (부모로서 연구자의 초등 자녀 수학지도에 대한 사례 연구: 초등 5학년 도형의 넓이를 중심으로)

  • Son, Byoung Im;Choi-Koh, Sang Sook
    • Education of Primary School Mathematics
    • /
    • v.22 no.4
    • /
    • pp.261-280
    • /
    • 2019
  • This study is a qualitative study on the case of teaching mathematics between parents and children. 12 lesson units were applied to the 5th grade elementary school child for the first semester, 2019. The purpose of this study was to identify conceptual understanding in the area, the types of problems that child felt difficult during the learning and parents' advantages and difficulties in this setting. For this study, video recording and voice recording were collected for each lesson class. The concept of the area was recognized correctly, the awareness of reconstruction became clear, and the concept of partitioning, unit iteration and structuring an array was more clearly rebuilt. He showed difficulty in conversion between units of the area, in displaying height of the shape whose height is displayed outside and drawing type of figure with same area after the value of the area was offered. In the learning situation of parents and children, parents who are researchers have the advantage of being able to customize up to their children and being free from time and cost constraints. There were difficulties in controlling negative emotion toward the child, determining the level of the children, distribution the class time and deciding the degree of intervention. Furthermore, research on parenting and child-to-parent teaching in mathematics is recommended.

A Case Study on the Students' Covariational Reasoning in the Continuous Functional Situations (함수적 상황에 대한 초등학생들의 공변추론 사례연구)

  • Hur, Joonho;Park, Mangoo
    • Education of Primary School Mathematics
    • /
    • v.21 no.1
    • /
    • pp.55-73
    • /
    • 2018
  • The purpose of this study is to investigate the effects of cognitive activity on cognitive activities that students imagine and cope with continuously changing quantitative changes in functional tasks represented by linguistic expressions, table of value, and geometric patterns, We identified covariational reasoning levels and investigated the characteristics of students' reasoning process according to the levels of covariational reasoning in the elementary quantitative problem situations. Participants were seven 4th grade elementary students using the questionnaires. The selected students were given study materials. We observed the students' activity sheets and conducted in-depth interviews. As a result of the study, the students' covariational reasoning level for two quantities that are continuously covaried was found to be five, and different reasoning process was shown in quantitative problem situations according to students' covariational reasoning levels. In particular, students with low covariational level had difficulty in grasping the two variables and solved the problem mainly by using the table of value, while the students with the level of chunky and smooth continuous covariation were different from those who considered the flow of time variables. Based on the results of the study, we suggested that various problems related with continuous covariation should be provided and the meanings of the tasks should be analyzed by the teachers.

An Analysis on the Competence and the Methods of Problem Solving of Children at the Before of School Age in Four Operations Word Problems (학령 전 아이들의 사칙연산 문장제 해결 능력과 방법 분석)

  • Lee, Dae-Hyun
    • Journal of the Korean School Mathematics Society
    • /
    • v.13 no.3
    • /
    • pp.381-395
    • /
    • 2010
  • The purpose of this paper is to examine the competence and the methods of problem solving in four operations word problems based on the informal knowledges by five-year-old children. The numbers which are contained in problems consist of the numbers bigger than 5 and smaller than 10. The subjects were 21 five-year-old children who didn't learn four operations. The interview with observation was used in this research. Researcher gave the various materials to children and permitted to use them for problem solving. And researcher read the word problems to children and children solved the problems. The results are as follows: five-year-old children have the competence of problem solving in four operations word problems. They used mental computation or counting all materials strategy in addition problem. The methods of problem solving were similar to that of addition in subtraction, multiplication and division, but the rate of success was different. Children performed poor1y in division word problems. According to this research, we know that kindergarten educators should be interested in children's informal knowledges of four operations including shapes, patterns, statistics and probability. For this, it is needed to developed the curriculum and programs for informal mathematical experiences.

  • PDF

Possibility of Generalization of Principles for Multi-Digit Addition and Subtraction (세 자리 수의 범위에서 학습한 덧셈과 뺄셈 원리의 일반화 가능성)

  • Chang, Hyewon;Lim, Miin
    • School Mathematics
    • /
    • v.19 no.1
    • /
    • pp.137-151
    • /
    • 2017
  • This study aims to investigate the possibility of elementary students' generalization from three-digit numbers to multi-digit numbers in principles for addition and subtraction. One of main changes was the reduction of range of numbers for addition and subtraction from four-digit to three-digit. It was hypothesized that the students could generalize the principles of addition and subtraction after learning the three-digit addition and subtraction. To achieve the purpose of this study, we selected two groups as a sampling. One is called 'group 2015' who learned four-digit addition and subtraction and the other is called 'group 2016' who learned addition and subtraction only to three-digit. Because of the particularity of these subjects, this study covered two years 2015~2016. We applied our addition and subtraction test which contains ten three-digit or four-digit addition and subtraction items, respectively. We collected their results of the test and analyzed their differences using t-test. The results showed statistically meaningful difference between the mean score of the two groups only for four-digit subtraction. Based on the result, we discussed and made some didactical suggestions for teaching multi-digit addition and subtraction.

Analysis of the Mathematically Gifted 6th and 7th Graders' Spatial Visualization Ability of Solid Figures (입체도형에 대한 $6{\sim}7$학년 수학영재들의 공간시각화 능력 분석)

  • Ryue, Hyun-A;Chong, Yeong-Ok;Song, Sang-Hun
    • School Mathematics
    • /
    • v.9 no.2
    • /
    • pp.277-289
    • /
    • 2007
  • This research aims to look into the mathematically gifted 6th and 7th graders spatial visualization ability of solid figures. The subjects of the research was six male elementary school students in the 6th grade and one male middle school student in the 1th grade receiving special education for the mathematically gifted students supported by the government. The task used in this research was the problems that compares the side lengths and the angle sizes in 4 pictures of its two dimensional representation of a regular icosahedron. The data collected included the activity sheets of the students and in-depth interviews on the problem solving. Data analysis was made based on McGee's theory about spatial visualization ability with referring to Duval's and Del Grande's. According to the results of analysis of subjects' spatial visualization ability, the spatial visualization abilities mainly found in the students' problem-solving process were the ability to visualize a partial configuration of the whole object, the ability to manipulate an object in imagination, the ability to imagine the rotation of a depicted object and the ability to transform a depicted object into a different form. Though most subjects displayed excellent spatial visualization abilities carrying out the tasks in this research, but some of them had a little difficulty in mentally imagining three dimensional objects from its two dimensional representation of a solid figure.

  • PDF