• Title/Summary/Keyword: 직선 근사

Search Result 64, Processing Time 0.026 seconds

Development of FEM Algorithm for Modeling Bed Elevation Change (하상변동 수치모의를 위한 유한요소법 알고리즘 개발)

  • Kim, Tae-Beom;Choi, Sung-Uk;Min, Kyung-Duck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.588-593
    • /
    • 2006
  • 자연하천은 일반적으로 만곡수로나 사행수로 형태를 보이고 있으며, 직선수로에서와 달리 원심력에 기인한 이차류 영향을 받게 된다. 이차류에 의해서 수면에서는 만곡부 바깥쪽으로, 하상에서는 만곡부 안쪽으로의 흐름특성을 보이게 된다. 만곡부 안쪽으로 가해지는 하상 전단응력에 기인하여 하상에서의 입자가 만곡부 안쪽으로 이송되며, 결과적으로 만곡부 안쪽에는 점사주가, 바깥쪽에는 소(pool)가 생성된다. 또한 지형경사의 생성으로 입자에 가해지는 중력효과도 변화된다. 따라서 이와 같은 자연하천의 흐름과 하상변동을 수치모의 하기 위해서는 만곡부 이차류 특성을 고려한 모형이 필요하다. 본 연구에서는 수심 적분된 흐름방정식과 하상토 보존방정식 (Exner equation)을 이용한 하상변동을 위한 비연계 수치모형을 위해서 하상토 보존방정식의 유한요소 알고리즘을 개발하였다. 하상토 보존방정식은 흐름 특성에 따른 평형 유사량의 공간변화율을 이용하여 일정 기간 동안의 하상 변화량을 계산한다. 이 때 이차류에 의한 하상 전단응력의 편각 및 지형경사 변화에 따른 실제 입자의 이송방향을 보정하여 평형 유사량이 계산된다. 이러한 보정식을 적용시키기 위해서는 유속성분의 공간변화량 및 지형경사의 공간성분이 필요하다. 유한요소법은 연속성 변수를 이산화시켜 근사해를 구하는 수치기법의 일종이기 때문에, 요소망이 불규칙적으로 구성되었을 경우 임의의 절점에서 연속성을 지닌 변수의 공간변화율을 계산하는데 어려움이 있다. 따라서 본 연구에서는 평형 유사량 계산 시에 절점이 아닌 요소 내부에서 평형 유사량을 계산하는, 하상토 보존방정식의 새로운 유한요소 알고리즘을 개발하고, 새로운 알고리즘을 적용시킨 수치모형의 검증을 행하였다. 경계조건 알고리즘의 검증으로 위해서 Soni 등 (1980)이 행한 상류 유입 유사량에 따른 하상변동을 수치 모의하고 실험치와 비교하였으며, Sutmuller와 Glerum (1980)이 수행한 만곡수로에서의 하상변동을 모의하고 실험과 비교하였다. 새로운 알고리즘을 적용시킨 하상토 보존방정식의 유한요소 수치모형의 결과는 매우 안정적이며, 실험과 매우 유사한 결과를 얻을 수 있었다. 본 수치모델은 현재 균일한 입자의 하상토만을 고려하므로, 입자분급이나 하상 장갑화 현상 등은 무시한다.

  • PDF

Nonlinear Analysis of RC Shell Structures Including Creep and Shrinkage Effects (크리프와 건조수축을 고려한 RC쉘 구조물의 비선형 해석)

  • 정진환;한충목;조현영
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.181-188
    • /
    • 1993
  • In this study, a numerical method for the material nonlinear analysis of reinforced concrete shell structures including the time dependent effects due to creep and shrinkage is developed. Degenerate shell elements with the layered approach are used. The perfect or strain hardening plasticity model in compression and the linearly elastic model in tension until cracking for concrete are employed. The reinforcing bars are considered as a steel layer of equivalent thickness. Each :steel layer has an uniaxial behaviour resisting only the axial force in the bar direction. A bilinear idealization is adopted to model elasto-plastic stress-strain relationships. For the nonlinear anaysis, incremental load method combined with unbalanced load iterations for each load increment is used. To include time dependent effects of concrete, time domain is divided into several time steps which may have different length. Some numerical examples are presented to study the validity and applicability of the present method. The results are compared with experimental and numerical results obtained by other investigator.

Prediction and Measurement of Propagation Path Loss in Underground Environments (지하공간에서의 전파 경로손실의 예측 및 측정)

  • 김영문;진용옥;강명구
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.736-742
    • /
    • 2003
  • This paper presents the propagation path loss in a tunnel which is a kinds of underground environments. To predict propagation path loss more accurately, we choose a straight tunnel with rectangular cross-section. The simulated receiver powers that are using a hybrid waveguide model and a Ray-Tracing method, are compared with the measured ones as a function of distance between TX and RX antennas in tunnel. The attenuation value of regression analysis for measured power in the tunnel is 0.0238dB/m which is similar to the one of the EH1.2 mode, 0.0246dB/m in hybrid waveguide model. By comparing simulation with measurement in tunnels, it has been shown that the measured values are approximate to the simulated results of ray-tracing model. In the analysis of wide-band channel characteristics of the tunnel, the more the distance between TX and RX antennas in tunnel increases, RMS delay spread increases and coherence bandwidth decreases.

A Study on the Wave-height Distribution of Multidirectional Random Waves at the Concave Corner by Refracted Breakwater Systems (우각부 방파제의 우각부 부근에서의 다방향불규칙 파랑의 파고분포에 관한 연구)

  • Lee, Hong-Sik;Kim, Sung-Duk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.429-438
    • /
    • 2008
  • The present study is to predict the multidiretional random wave height at the front face and concave corner of a refracted breakwater which is not straight. The numerical simulation on wave height at the front face of an insular breakwater is performed by using the boundary element method, and obtained results have been compared with those of exact- and analytical solutions of the eigenfunction presented by Goda et al. (1971) and the other existing numerical solution. Also, the results of wave-height distribution due to the refracted breakwater have been validated through comparisons with previous results of analytical solution. Based on the validation through these comparisons, several wave-height distributions at the interested region have been illustrated for various conditions related with concave corner angles and the wave incidence, and then the prediction of wave height are simulated at the front face and concave corner of a refracted breakwater under construction currently. Excellent agreements have been obtained in all cases, and this study can effectively be utilized for predicting random waves for various breakwater system.

Design of a Spatial Filtering Neural Network for Extracting Map Symbols (공간필터를 이용한 지도기소 추출 신경회로망의 구성)

  • Gang, Ik-Tae;Kim, Uk-Hyeon;Kim, Gyeong-Ha;Kim, Yeong-Il;Lee, Geon-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.2
    • /
    • pp.199-208
    • /
    • 1995
  • In this paper, a neural network architecture which can extract map symbols by being based on the results of physiological and neuropsychological studies on pattern recognition is proposed. This network is composed of multi-layers and synaptic activities of combining layers are implemented by spatial filters which approximate receptive fields of optic nerve cells. In pattern recognition which is followed by color classification for extracting of map symbols from input image, this network is searching for candidatepoints in lower layers (layer 2, 3) by using local features such as lines and end-points and then processing symbols recognition on those points in upper layer(layer 4) by using global features.

  • PDF

Changes of the Amount of Forest Floor Organic Matter in Deciduous Forest along the Altitudinal Gradient (낙엽활엽수림에 있어서 표고 경도에 따른 임상유기물량의 변화)

  • Yi, Myong-Jong
    • Journal of Forest and Environmental Science
    • /
    • v.11 no.1
    • /
    • pp.72-80
    • /
    • 1995
  • Altitudinal effects on the accumulation of O layer were examined for deciduous broad-leaved forests in the experimental forest of Kangwon National University. There found a marked increased towards the higher altitudes in the thickness of O layer. These trends could be observed conspicuously on the F2 and H layers. The relation between thickness (X, cm) and dry weight (Y, $kg/m^2$) of O layer was approximated by linear regression equations;Y($kg/m^2$ = aX(cm). The values of coefficient "a" for the F2, H and F2+H layers were 0.43, 0.61 and 0.53, respectively. Bulk densities of the accumulated organic matter estimated nearly to be $45g/dm^2$ in F2 layer, $60g/dm^2$ in H layer and $55g/dm^2$ in F2+H layer. The amount of O layer ranged from 13ton/ha for the forest at 280m in altitude to 41ton/ha for the upper forest at 710m in altitude. Among these total amount of the O layer, F1, F2 and H layer occupied to be 5~10ton/ha, 5~11ton/ha and 13~40ton/ha, respectively.

  • PDF

Lagrangian Formulation of a Geometrically Exact Nonlinear Frame-Cable Element (기하 비선형성을 엄밀히 고려한 비선형 프레임-케이블요소의 정식화)

  • Jung, Myung-Rag;Min, Dong-Ju;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.195-202
    • /
    • 2012
  • Two nonlinear frame elements taking into account geometric nonlinearity is presented and compared based on the Lagrangian co-rotational formulation. The first frame element is believed to be geometrically-exact because not only tangent stiffness matrices is exactly evaluated including stiffness matrices due to initial deformation but also total member forces are directly determined from total deformations in the deformed state. Particularly two exact tangent stiffness matrices based on total Lagrangian and updated Lagrangian formulation, respectively, are verified to be identical. In the second frame element, the deformed curved shape is regarded as the polygon and current flexural deformations in iteration process are neglected in evaluating tangent stiffness matrices and total member forces. Two numerical examples are given to demonstrate the accuracy and the good performance of the first frame element compared with the second element. Furthermore it is shown that the first frame element can be used in tracing nonlinear behaviors of cable members.

An Evaluation of Shear Strength Parameters$(c,\varphi)$ for Weathering Decomposed Granite Soil (화강풍화토의 전단정수$(c,\varphi)$ 평가)

  • 이문수;이광찬
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.181-194
    • /
    • 1999
  • Both the chemical components and the physical and mechanical properties of the compacted and undisturbed weathered granite soils were estimated to investigate the influences of the degree of weathering and saturation on the shear strength. The weathered granite soils used in this study were taken from six different sites in Korea. The results showed that the shear strength of weathered granite soil decreased with increasing the degree of weathering and saturation. Under the normal stresses less that 40kPa, the shape of Mohr-Coulomb failure envelope followed curved or hyperbolic relationship and a half of cohesion value obtained by the common shear test was observed. Using the Sueoka's method, the values of CWI were ranged from 21.5 to 31.26 which can be characterized as a completely weathered granite soil. Large decrease in shear strength and remarkable variation in dilatancy were observed in saturated granite soil compared to unsaturated soil. It was also found that the shear strength of undisturbed weathered granite soil of Pungam site can be expressed approximately by the equation of ${(\tau)_{sat}= 1.0(\tau)_{unsat}-12.48}$ and this equation can be extended to the other sites considered in this study.

  • PDF

First-Principles Study on the Magnetism and Electronic Structure of Fe Nanostripes (나노 구조 철띠의 자성과 전자구조에 대한 제일원리 연구)

  • Byun, Y.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.229-233
    • /
    • 2006
  • We investigated the magnetic properties of Fe nanostripes by using the all electron full-potenial linearized augmented plane-wave (FLAPW) energy band method within the generalized gradient approximation (GGA). The magnetic moments of the Fe atoms in the edge Fe chains of the stripes composed of three, five, and seven chains have saturated values of 2.97 or 2.98 ${\mu}_B$, and the values of the center chains are 2.82 ${\mu}_B$ which is similar to that of 2D square lattice. The charge and spin density contour plots showed that the flat distribution in the edge region of the stripes, and it is due to the spilled out p-electrons from the atoms in the edge line. The calculated density of states for the edge atoms in the stripes with seven Fe chains showed that the narrowed width compared to that of center atoms due to the band narrowing effect at the edge.

The Optimal Configuration of Arch Structures Using Force Approximate Method (부재력(部材力) 근사해법(近似解法)을 이용(利用)한 아치구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;Ro, Min Lae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.95-109
    • /
    • 1993
  • In this study, the optimal configuration of arch structure has been tested by a decomposition technique. The object of this study is to provide the method of optimizing the shapes of both two hinged and fixed arches. The problem of optimal configuration of arch structures includes the interaction formulas, the working stress, and the buckling stress constraints on the assumption that arch ribs can be approximated by a finite number of straight members. On the first level, buckling loads are calculated from the relation of the stiffness matrix and the geometric stiffness matrix by using Rayleigh-Ritz method, and the number of the structural analyses can be decreased by approximating member forces through sensitivity analysis using the design space approach. The objective function is formulated as the total weight of the structures, and the constraints are derived by including the working stress, the buckling stress, and the side limit. On the second level, the nodal point coordinates of the arch structures are used as design variables and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, the problem of optimization can be reduced to unconstrained optimal design problem which is easy to solve. Numerical comparisons with results which are obtained from numerical tests for several arch structures with various shapes and constraints show that convergence rate is very fast regardless of constraint types and configuration of arch structures. And the optimal configuration or the arch structures obtained in this study is almost the identical one from other results. The total weight could be decreased by 17.7%-91.7% when an optimal configuration is accomplished.

  • PDF