• Title/Summary/Keyword: 지질나노입자

Search Result 36, Processing Time 0.031 seconds

Preparation of the Dexamethasone-incorporated Lipid Nanosphere: Characteristics of Lipid Nanosphere by Varying Species and Ratio of Lipid (덱사메타손이 봉입된 지질나노입자의 제조: 지질의 종류와 함량 변화에 따른 지질나노입자의 특성)

  • Jeong, Seok-Hyeon;Lee, Jeong-Eun;Seong, Ha-Su;Sin, Byeong-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.6
    • /
    • pp.464-470
    • /
    • 2006
  • the coricosteroid drug dexamethasone is an efficacious antiinflammatory drug, it is difficult to formulate in an injectable formulation due to its poor aqueous solubility. A lipid-based nanosphere formulation containing dexamethasone was designed for solubilization of the drug in aqueous solution and sustained release of the drug from the nanosphere. The lipid nanospheres, composed of phospholipid, cholesterol and cationic lipid, were prepared by self emulsification-solvent diffusion method followed by diafiltration. Physicochemical characteristics such as mean particle diameter, zeta potential and drug loading efficiency of the lipid nanospheres were investigated according to the variation of either the kind of lipid or the lipid composition. The lipid nanospheres had a mean diameter 80-120 nm and dexamethasone loading efficiency of greater than 80%. The drug loading efficiency increased with the increase of the length of aliphatic chain attached to the phospholipid. However, the drug loading efficiency was inversely proportional to the increase of cholesterol content in the lipid composition. The lipid nanosphere could not be prepared without the use of cationic lipid and the drug loading efficiency was proportional to the increase of cationic lipid content. The lipid nanospheres containing dexamethasone are a promising novel drug carrier for an injectable formulation of the poorly water-soluble drugs.

Design and Characterization of Ascorbyl Glucoside loaded Solid Lipid Nanoparticles to improve skin penetration (피부 투과 개선을 위한 고형지질나노입자내 Ascorbyl glucoside 봉입 설계 및 특성화)

  • Yeo, Sooho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.662-668
    • /
    • 2021
  • The aim of the present study was to design ascorbyl glucoside (AG) loaded solid lipid nanoparticles (SLNs) to improve skin penetration of AG. AG loaded SLNs were prepared using double emulsion method. The prepared AG loaded SLNs investigated particle characteristics (particle size, polydispersity index, zeta potential, loading capacity). Skin penetration study was carried out using SkinEthic RHE as one of the reconstructed human epidermis models. The mean particle size and zeta potential of SLNs were 172.65 - 347.19 nm and -22.90 - -41.20 mV, respectively. The loading capacity of AG loaded SLNs demonstrated that loading efficiency and loading amount were ranged from 44.18% to 57.77% and 12.83% to 16.15%, respectively. The results of penetration showed that all SLNs enhanced the skin penetration of AG and the amount of AG from SLNs were approximately 3.7 - 7.4 times higher than that from AG solution. Therefore, AG loaded SLN might be a promising topical drug delivery system.

Design of Solid Lipid Nanoparticles to Improve Penetration of Niacinamide through Artificial Skin Tissue (나이아신아마이드의 인공피부조직 투과 개선을 위한 고형지질나노입자의 설계 연구)

  • Yeo, Sooho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.133-138
    • /
    • 2021
  • In this study, Niacinamide (NI) was loaded into solid lipid nanoparticles (SLNs) and skin permeability was evaluated to improve skin permeability of NI, which was a skin whitening substance. NI was able to effectively load within SLN with a double-melting emulsification method, producing stable particles with average particle sizes of 263.30 to 436.93 nm and a zeta potential of -34.77 to -57.60 mV. Artificial skin tissue (SkinEthicTM RHE) derived from skin keratinocytes derived from human epidermal tissue was used for the skin permeation study of NI. Skin transmittance and deposition experiments of NI confirmed that all SLN formulations improved skin transmittance and deposition rates of NI, approximately 5.4 ~ 7.6 and 9.5 ~ 20.8 improvement over SLN applications. Therefore, SLN manufactured in this study have shown sufficient results to improve the skin permeability of the functional whitening substance, NI.

Review of the CO2 Geological Storage Using Nanoparticle-stabilized CO2 Foam (나노입자기반 CO2 폼을 이용한 CO2 지중저장에 대한 기술적 고찰)

  • Son, Han Am
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.213-220
    • /
    • 2020
  • When CO2 foam is injected into the saline aquifer, the relative permeability of CO2 decreases and its viscosity increases, thereby reducing mobility in porous media and ultimately improving CO2 storge with enhanced sweep efficiency. In general, surfactants were used to fabricate CO2 foam. Recently, nanoparticles have been used to form stable foam than surfactant. This paper introduces CO2 storage technology using nanoparticle stabilized CO2 foam. If the surface of the hydrophilic nanoparticles is partially modified into a CO2-philic portion, the particles have an affinity for CO2 and water, thus forming a stable CO2 foam even in deep saline aquifers under high temperature and high salinity conditions, thereby it can be stored in the pores of the rock. In terms of economics, injection method using nanopaticle-stabilized CO2 foam is more expensive than the conventional CO2 injection, but it is estimated that it will have price competitiveness because the injection efficiency is improved. From an environmental point of view, it is possible to inject chemical substances such as surfactants and nanomaterials into aquifers or reservoirs for specific purposes such as pollutant removal and oil production. However, some studies have shown that nanoparticles and surfactants are toxic to aquatic animals, so environmentally proven substances should be used. Therefore, further research and development will be needed to study the production and injection of nanoparticle-stabilized CO2 foam that are environmentally safe and economically reasonable.

Behaviour of Nanoemulsions Containing Ceramide IIIB and Stratum Corneum Lipids (세라마이드 IIIB와 각질층 지질을 함유한 나노에멀젼의 거동)

  • Cho, Wan Goo;Kim, Kyung Ah;Jang, Seon Il;Cho, Byoung Ok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • Oil/water (O/W) nanoemulsions are effective vehicles to change the permeability of the skin. In this study, we focused on the preparation and characterization of nanoemulsion which serve as colloidal carriers for the dermal application of ceramide IIIB (CIIIB) and stratum corneum (SC) lipids such as cholesterol, and palmitic acid. In order to optimize the nanoemulsions, emulsification process conditions were conducted with regard to droplet size, nanoemulsion stability, and solubility of CIIIB. A decrease in droplet size was observed through emulsification temperature of $80^{\circ}C$ and phase inversion composition (PIC) method. CIIIB has low solubility in oil and water. When the concentration of CIIIB was increased, the droplet size of nanoemulsion was increased. When Lipoid S75-3 was added to the oil phase, the solubility of CIIIB increased, indicating some interactions shown in DSC measurements. CIIIB and SC lipids could be successfully incorporated in nanoemulsions without crystallization or physical instability. In conclusion, a stable nanoemulsion containing the SC lipids could be effective as an efficient moisturizing system for skin.

Review: Magnetite Synthesis using NanoFermentation (Review: NanoFermentation을 이용한 자철석 합성연구)

  • Moon, Ji-Won;Roh, Yul;Phelps, Tommy J.
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • Biomineralization has been explored for geochemical cycles and microbial tolerance mechanisms to metal toxicity. Here, we are introducing NanoFermentation which enables economic, environmentally friendly, requiring low input energy, and scalable manufacturing of nano-dimensioned magnetite. We are also focusing on controlling factors of crystallite size which can determine superparamagnetism and ferrimagnetism. Controlling factors are such as microbial species, temperature, incubation time, medium composition, substituted elements and their concentration, precursor type, reaction volume, precursor concentration density and their combinations. Crystallite size distribution of biomagnetite depends on the balance between nuclei generation and crystal growth. Biomineralization will elucidate elemental cycles on earth crust and microbial ecology as well as it will be applied to material sciences and devices via massive production of nanomaterials.

A Study on the Design of Solid Lipid Nanoparticles for enhanced Skin Penetration of Pantothenic Acid (Pantothenic acid의 피부 투과 개선을 위한 고형지질나노입자설계 연구)

  • Yeo, Sooho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.915-921
    • /
    • 2021
  • In this study, we designed pantothenic acid (PA) loaded solid lipid nanoparticles (SLNs) for enhanced skin penetration of PA that is used for moisturizing agent in cosmetics with hydrophilic property. SLNs were prepared using various lipids and surfactants. PA loaded SLNs were fabricated using double emulsion method. The fabricated PA loaded SLNs assessed particle size, polydispersity index, zeta potential, loading capacity. Skin penetration study was conducted using artificial skin tissue originated from human epidermis as one of the reconstructed human epidermis models. The mean particle size and zeta potential of SLNs ranged from 192.15 nm to 369.87 nm and -21.39 mV to -40.55 mV, respectively. The loading efficiency and loading amount of PA loaded SLNs were ranged from 44.36% to 57.16% and 12.60% to 16.36%, respectively. The results of penetration demonstrated that all SLNs improved PA skin penetration. In addition, the amount of PA from SLNs were approximately 3.8 - 8.8 times higher than that from PA solution. Therefore, the fabricated SLNs demonstrated the enhancment of skin penetration of PA. Particularly, the SLN, which used glyceryl behenate and Span 60, showed optimal skin penetration of PA.

Cosmetic Application of Bis-ethylhexyloxyphenolmethoxyphenyltriazine (BEMT) Loaded Solid Lipid Nano-particle (SLN) (비스에칠헥실옥시페놀메톡시페닐트리아진(BEMT)을 봉입한 고형지질나노입자(Solid Lipid Nano-particle)의 화장품 응용)

  • Lee, Geun-Soo;Lee, Dong-Whan;Pyo, Hyeung-Bae;Choi, Tae-Boo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.4
    • /
    • pp.219-225
    • /
    • 2007
  • Bis-ethylhexyloxyphenolmethoxyphenyltrizine (BEMT) is one of the most widely used chemical UVA+UVB double absorbers in sunscreen products. But topical application of BEMT is restricted due to its defects in product. The purpose of this study is to adopt the sunscreen product of solid lipid nano-particles containing BEMT (BEMT-SLN). The particle diameters, the encapsulation efficiencies and the crystallization index (C.I.) are about 330nm, 93.3 % and the 4.3 %. As a result, in vitro penetration and release of BEMT were generally higher in O/W emulsion than the SLN formulation. However in vivo study, it was shown that the rate of release could be decreased by 80 % in the SLN formulation. The sun protection factor (SPF) of the SLN formulation increased by 100 % in the in vitro UV protection test. Therefore, SLN formulation potentiated the UV-blocking power of BEMT. This study suggest that SLN can be used for the encapsulation of BEMT.

Preparation and Characterization of Lipid Nanoparticles Containing Fat-Soluble Vitamin C Derivatives and Gallic Acid (지용성 비타민 C 유도체 및 갈릭산을 함유한 지질나노입자 제조 및 특성)

  • Ji Soo Ryu;Ja In Kim;Jae Yong Seo;Young-Ah Park;Yu-Jin Kang;Ji Soo Han;Jin Woong Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.2
    • /
    • pp.103-110
    • /
    • 2024
  • Lipid nanoparticles (LNPs) are a stable and an effective system that protects cell-impermeable biologically active compounds such as nucleic acids, proteins, and peptides against degradation caused by subtle environmental changes. This study focuses on developing LNPs encapsulating gallic acid (GA), an antioxidant, to effectively prolong the half-life of tetrahexyldecyl ascorbate (THDC), a oil-soluble vitamin C derivative. These LNPs were synthesized in small, uniform sizes at room temperature and pressure conditions using a microfluidics chip. Compared to liposomes manufactured under high pressure and high temperature conditions through conventional microfluidizers, LNPs manufactured through microfluidics chips had excellent dispersion and temperature stability, and improved skin absorption as well as improved oxidative stability of fat-soluble vitamin C derivatives. Future studies will focus on ex vivo and in vivo evaluations to study skin improvement to further validate these results.