Cosmetic Application of Bis-ethylhexyloxyphenolmethoxyphenyltriazine (BEMT) Loaded Solid Lipid Nano-particle (SLN)

비스에칠헥실옥시페놀메톡시페닐트리아진(BEMT)을 봉입한 고형지질나노입자(Solid Lipid Nano-particle)의 화장품 응용

  • 이근수 (한불화장품(주) 기술연구소) ;
  • 이동환 (한불화장품(주) 기술연구소) ;
  • 표형배 (한불화장품(주) 기술연구소) ;
  • 최태부 (건국대학교 생물화학공학부)
  • Published : 2007.12.30

Abstract

Bis-ethylhexyloxyphenolmethoxyphenyltrizine (BEMT) is one of the most widely used chemical UVA+UVB double absorbers in sunscreen products. But topical application of BEMT is restricted due to its defects in product. The purpose of this study is to adopt the sunscreen product of solid lipid nano-particles containing BEMT (BEMT-SLN). The particle diameters, the encapsulation efficiencies and the crystallization index (C.I.) are about 330nm, 93.3 % and the 4.3 %. As a result, in vitro penetration and release of BEMT were generally higher in O/W emulsion than the SLN formulation. However in vivo study, it was shown that the rate of release could be decreased by 80 % in the SLN formulation. The sun protection factor (SPF) of the SLN formulation increased by 100 % in the in vitro UV protection test. Therefore, SLN formulation potentiated the UV-blocking power of BEMT. This study suggest that SLN can be used for the encapsulation of BEMT.

비스에칠헥실옥시페놀메톡시페닐트리아진(Bis-ethylhexyloxyphenolmeth oxyphenyltrizine; BEMT)은 식품의약품안전청 고시 기능성 원료로 자외선 차단 제품에 널리 사용되는 UVA와 UVB의 화학적 자외선 흡수제이다. 그러나 BEMT는 실제 적용에 있어 여러 가지 결점이 있어 사용이 제한되고 있다. 본 연구의 목적은 BEMT가 적용된 고형지질나노입자(BEMT- SLN)의 자외선차단제품 응용에 있다. 제조된 고형지질나노입자의 입도는 약 330 nm, 봉입율은 93.3 %, 결정화지표는 4.3 %였다. In vitro 방출 및 투과 실험 결과에서, BEMT는 SLN보다 O/W 에멀젼이 대체로 높았다. In vivo 실험에서 SLN의 BEMT 방출비는 80 % 감소하였다. 또한 in vitro UV 방어 효과 실험에서 SLN이 적용된 처방의 자외선방어지수(SPF) 값은 약 2.5배 증가하였다. 결국 SLN은 BEMT를 효과적으로 봉입하고 있었으며, 자외선 차단 상승 효과를 나타낸다.

Keywords

References

  1. K. sato, A mechanism of UV A induced pigmentation and UV A protection, SOFW J. 7, 12 (2007)
  2. R. G. Christine, A. Edith, C. Monique, J. P. Ortonne, and B. Robert, Nitric oxide produced by ultraviolet-irradiated keratinocytes stimulates melanogenesis, J. Clin. Invest., 99(4), 635 (1997) https://doi.org/10.1172/JCI119206
  3. R. P. Stokesa and B. L. Diffey, In vitro assay of high SPF sunscreens, J. Soc. Cosmet. Chem., 48, 289 (1997)
  4. H. L. Kligman and P. Zheng, The protective effect of a broad spectrum sunscreen against chronic UVA radiation in hairless mice: A histologic and ultrastructural assessment, J. Soc. Cosmet. Chem., 45, 21 (1994)
  5. B. Magenheim, M. Y. Levy, and S. Benita, A new in vitro technique for evaluation of drug release profile from colloidal carriers ultrafiltration technique at low pressure, Int. J. Pharm., 91, 115 (1993)
  6. R. H. Muller, S. Maassen, C. Schwarz, and W. Mehnert, Solid lipid nano-particles (SLN) as potential carrier for human use: interaction with human granulocytes, J. Control Release., 47, 261 (1997) https://doi.org/10.1016/S0168-3659(97)01653-2
  7. R. H. Muller. M. Radtke, and S. A. Wissing, Solid lipid nano-particles (SLNs) and nano-structured lipid carriers (NLC) in cosmetic and dermatological preparations, Advanced Drug Delivery Reviews, 54(1), 131 (2002) https://doi.org/10.1016/S0169-409X(02)00118-7
  8. T. Vringer and H. A. Ronde, Preparation and structure of a water in oil cream containing lipid nano-particles, J. Pharm. Sci., 84, 466 (1995) https://doi.org/10.1002/jps.2600840415
  9. N. A. Shaath, The chemistry of sunscreens, eds, N. J. Lowe and M. A. Pathak, Marcel Dekker, New York (1997)
  10. H. J. Yoo and K. S. Kim, Preparation and drug release profiles of solid lipid nano-particles (SLN), J. Kor. Pharm. Sci., 26(2), 125 (1996)
  11. K. Ruckmani. M. Sivakumar, and P. A. Ganeshukumar, Methorexate loaded Solid lipid nano-particles (SLN) for effective treatment of carcinoma, J. Nanoscience and Nanotechnology, 6, 2991 (2006) https://doi.org/10.1166/jnn.2006.457
  12. S. A. Wissing and R. H. Muller, Solid lipid nano-particles as career for sunscreens: In vitro release and in vivo skin penetration, J. Control Release, 81, 225 (2002) https://doi.org/10.1016/S0168-3659(02)00056-1
  13. G. S. Sim. B. C. Lee, Y. H. Zhang, and H. B. Pyo, Anti-oxidative and inhibitory effect of Saussurea involucrata on MMP-1 in UVA-irradiated human dermal fibroblast, J. Soc. Cosmet. Scientists Korea, 31(4), 329 (2005)
  14. S. Y. Ahn, J. H. Bae, H. K. Lee, S. J. Moon, and I. S. Chang, Improvement of in vitro Sun Protection Factor Measurement, J. Soc. Cosmet. Scientists Korea, 30(1), 129 (2004)
  15. A. C. Watkinson, K. R. Brain, K. A. Waters, and J. Hadgraft, Prediction of percutaneous penetration of UV filters in sunscreen formulations, Int. J. Cosmet. Sci., 14, 265 (1992) https://doi.org/10.1111/j.1467-2494.1992.tb00059.x
  16. G. Yener, T. Incegul, and N. Yener, Importance of using solid lipid nano-particles as careers for UV filters on the example octylmethoxycinnamate, Int. J. Pharm., 258, 203 (2003) https://doi.org/10.1016/S0378-5173(03)00203-5
  17. S. A. Wissing and R. H. Muller, Cosmetic applications for solid lipid nano-particles(SLN), Int J. Pharm., 254, 65 (2003) https://doi.org/10.1016/S0378-5173(02)00684-1
  18. S. A. Wissing and R. H. Muller, The development of an improved carrier system for sunscreen formulation based on crystalline lipid nano-particles, Int. J. Pharm., 242, 373 (2002) https://doi.org/10.1016/S0378-5173(02)00219-3
  19. M. W. Anderson. J. P. Hewitt, and S. R. Spruce, Sunscreens, eds. N. J. Lowe and M. A. Pathak, 353, Marcel Dekker, New york (1997)