DOI QR코드

DOI QR Code

Preparation and Characterization of Lipid Nanoparticles Containing Fat-Soluble Vitamin C Derivatives and Gallic Acid

지용성 비타민 C 유도체 및 갈릭산을 함유한 지질나노입자 제조 및 특성

  • Ji Soo Ryu (CIR Center, COSMECCA KOREA) ;
  • Ja In Kim (CIR Center, COSMECCA KOREA) ;
  • Jae Yong Seo (CIR Center, COSMECCA KOREA) ;
  • Young-Ah Park (H&A Pharmachem, R&D center) ;
  • Yu-Jin Kang (H&A Pharmachem, R&D center) ;
  • Ji Soo Han (Department of Beauty industry, Sungshin Women's) ;
  • Jin Woong Kim (Department of Biocosmetics, Sungkyunkwan University)
  • 유지수 ((주)코스메카코리아 기술연구원) ;
  • 김자인 ((주)코스메카코리아 기술연구원) ;
  • 서재용 ((주)코스메카코리아 기술연구원) ;
  • 박영아 (H&A 파마켐 연구소) ;
  • 강유진 (H&A 파마켐 연구소) ;
  • 한지수 (성신여자대학교 뷰티산업학과) ;
  • 김진웅 (성균관대학교 바이오코스메틱스학과)
  • Received : 2024.03.20
  • Accepted : 2024.05.23
  • Published : 2024.06.30

Abstract

Lipid nanoparticles (LNPs) are a stable and an effective system that protects cell-impermeable biologically active compounds such as nucleic acids, proteins, and peptides against degradation caused by subtle environmental changes. This study focuses on developing LNPs encapsulating gallic acid (GA), an antioxidant, to effectively prolong the half-life of tetrahexyldecyl ascorbate (THDC), a oil-soluble vitamin C derivative. These LNPs were synthesized in small, uniform sizes at room temperature and pressure conditions using a microfluidics chip. Compared to liposomes manufactured under high pressure and high temperature conditions through conventional microfluidizers, LNPs manufactured through microfluidics chips had excellent dispersion and temperature stability, and improved skin absorption as well as improved oxidative stability of fat-soluble vitamin C derivatives. Future studies will focus on ex vivo and in vivo evaluations to study skin improvement to further validate these results.

지질나노입자(lipid nanoparticles, LNPs)란, 세포 불투과성인 치료용 핵산, 단백질 및 펩타이드와 같은 생물학적 활성 화합물을 미세한 환경 변화에 의한 분해로부터 보호해 안정적이면서 효과적인 약물전달시스템이다. 본 연구에서는 지용성 비타민 C 유도체인 테트라헥실데실아스코르베이트(tetrahexyldecyl ascorbate, THDC)의 생체 내 반감기를 효과적으로 연장시키기 위해 산화방지제인 갈릭산(gallic acid, GA)을 함유하는 지질나노입자를 개발하였다. 마이크로플루이딕스칩(microfludics chip)을 통해 상온 및 상압 조건 하에서 작고 균일한 크기로 제작하였다. 기존 마이크로플루다이저(microfluidizer)를 통해 고압 및 고온 조건 하에 제작된 리포좀과 비교하였을 때, 마이크로플루이딕스칩(microfludics chip)을 통해 제작된 LNPs인 경우, 분산 및 온도에 따른 안정성이 우수하였으며, 지용성 비타민 C 유도체의 산화 안정성을 향상시켰을 뿐 아니라 피부 흡수율도 개선된 것을 확인하였다. 향후 연구에서는 이러한 결과를 더욱 입증하기 위해 피부 개선 효과를 연구하기 위한 생체 외 및 생체 내 평가에 중점을 둘 것이다.

Keywords

References

  1. Y. J. Kang, J. I. Kim, S. Y. Son, Y. A. Park, and H. G. Ji, The formation and stabilization of niosome with various surfactants, J. Korean Soc. Cosmetol., 9(1), 97 (2019).
  2. M. Maeki, N. Kimura, Y. Sato, H. Harashima, and M. Tokeshi, Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems, Advanced Drug Delivery Reviews, 128, 84 (2018).
  3. R. Tenchov, R. Bird, A. E. Curtze, and Q. Zhou, Lipid nanoparticles- from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement, ACS Nano, 15(11), 16982 (2021).
  4. V. J. Lingayat, N. S. Zarekar, and R. S. Shendge, Solid lipid nanoparticles: A review, Nanosci. Nanotechnol. Res., 4(2), 67 (2017).
  5. C. B. Roces, G. Lou, N. Jain, S. Abraham, A. Thomas, G. W. Halbert, and Y. Perrie, Manufacturing considerations for the development of lipid nanoparticles using microfluidics, Pharmaceutics, 12(11), 1095 (2020).
  6. S. Kim, B. Choi B, Y. Kim, and G. Shim, Immunemodulating lipid nanomaterials for the delivery of biopharmaceuticals, Pharmaceutics, 15(6), 1760 (2023).
  7. R. N. Kularatne, R. M. Crist, and S. T. Stern, The future of tissue-targeted lipid nanoparticle-mediated nucleic acid delivery, Pharmaceuticals, 15(7), 897 (2022).
  8. J. A. Kulkarni, D. Witzigmann, S. Chen, P. R. Cullis, and R. van der Meel, Lipid nanoparticle technology for clinical translation of siRNA therapeutics, Acc. Chem. Res., 52(9), 2435 (2019).
  9. S. J. Shepherd, C. C. Warzecha, S. Yadavali, R. El-Mayta, M. G. Alameh, , L. Wang, and M. J. Mitchell, Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device, Nano letters, 21(13), 5671 (2021).
  10. M. M. Almeida, J. M. Alves, D. C. Patto, C. R. Lima, J. S. Quenca-Guillen, M. I. Santoro, and E. R. Kedor- Hackmann, Determination of tocopheryl acetate and ascorbyl tetraisopalmitate in cosmetic formulations by HPLC, Int. J. Cosmet. Sci., 31(6), 445 (2009).
  11. H. Zhang, X. Zhu, J. Shen, H. Xu, M. Ma, W. Gu, Q. Jiang, J. Chen, and J. Duan, Characterization of a liposomebased artificial skin membrane for in vitro permeation studies using Franz diffusion cell device, J. Liposome Res., 27(4), 302 (2017).
  12. S. O. Jeon, H. J. Hwang, D. H. Oh, J. E. Seo, K. H. Chun, S. M. Hong, M. J. Kim, W. C. Kim, M. S. Park, C. H. Yoon, K. H. Min, C. W. Suh, and S. Lee, Enhanced percutaneous delivery of recombinant human epidermal growth factor employing nano-liposome system, J. Microencapsul., 29(3), 234 (2012).