• Title/Summary/Keyword: 주파수합성기

Search Result 69, Processing Time 0.024 seconds

Development of the Frequency Synthesizer for Multi-function Radar (다기능 레이더용 주파수합성기 개발)

  • Yi, Hui-min;Choi, Jae-hung;Han, Il-tak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1099-1106
    • /
    • 2018
  • In this paper, we developed and then analyzed the specifications of the frequency synthesizer which was applied to long range MFR (Multi-function Radar). These specifications were able to guarantee the functions and performance of MFR. MFR was the radar system that used phase array for electronically scanning. This frequency synthesizer made various frequency signals including to STALO (Stable Local Oscillator) for MFR. By analyzing the MFR requirements, we choose the optimal frequency synthesis method and then we got the best performance and functionality including to physical size for this system. We designed and fabricated DDS (Direct Digital Synthesizer)-driven Offset-PLL (Phase Locked Loop) synthesizer to meet the requirements which were low phase noise, fast switching time and low spurious. This synthesizer had less than -131dBc/Hz@100kHz phase noise and less than $4.1{\mu}s$ switching time, respectively.

Frequency Synthesizer Modeling Using MATLAB (MATLAB을 이용한 주파수합성기의 모델링)

  • 오동익
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.361-364
    • /
    • 1998
  • 주파수 합성기는 주로 PLL을 이용하여 설계하는데, PLL(Phase-lock loop)이란 출력신호 주파수를 항상 일정하게 유지하도록 구성된 주파수 부귀환 회로로써 기본적인 구성은 위상출력기, 저역통과필터, 전압 제어 발진기로 이루어진다. 이런 PLL의 기본적인 구성에 프로그래머블카운터를 VCO의 출력단에 부가하여 구성한 형태가 주파수합성기이다. 이 주파수합성기의 출력을 프로그래머블 디바이더에 입력하기 전에 주파수를 낮출 필요가 있는데, 현재 슈퍼헤테로다인 다운 컨버터방식과 프리스케일러방식과 펄스 스웰로 카운터를 사용하는 방식 등의 3가지 방법이 있다. 본 논문에서는 펄스 스웰로 카운터 방식의 주파수 합성기를 MATLAB의 GUI환경과 병행하여 시뮬레이션 과정을 통한 동작특성을 이해하고, 한 화면에서 이루어지는 조작에 의해 모든 주파수 합성기의 요소를 관찰할 수 있도록 모델링하였다. 그리고, 모델링한 주파수합성기와 실제 주파수합성기에서 예상되는 출력과 비교하여 그 결과에 있어서 얼마나 유사한지 살펴보았다.

  • PDF

The Design of Frequency Synthesizer by Open and Closed Loop Alternation Method (개폐루프 교대방식에 의한 주파수합성기의 설계)

  • 김익상;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.2
    • /
    • pp.124-132
    • /
    • 1987
  • In this paper, a new Open and Closed Loop Alternation(OCLA) frequency synthesizer is developed to eliminate a frequency error occurring in the transition state of a frequency hopping. This frequency synthesizer consists of a phase comparator(PC), two low pass filters(LPF), two voltage controlled oscillators(VCO), switching elements, a programmable divider and frequency hopping controller, and the stabilized output frequency can be obtained by switching performance. In addigion, it can be found that the characteristic of its circuit construction makes it easy to attach an external circuitry to the open loop.

  • PDF

Design and Implementation on Frequency Synthesizer Qualification Model Level for SAR payload (위성 레이다용 QM급 주파수합성기 설계 및 제작)

  • Kim, Dongsik;Kim, Hyunchul;Heo, John;Kim, Wansik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.9-14
    • /
    • 2020
  • In this paper, Qualification Model of frequency synthesizer is designed for X-band SAR system and performed electrical and environment test. Designed frequency synthesizer generate 13.65 GHz with very low phase noise performance. The integrated phase noise from 10Hz to 1MHz is -37.91 dBc. IRF performances are analyzed according to phase noise and jitter. Also, thermal and structure analysis are achieved for stable operation in space environment. Designed frequency synthesizer is consist of 2 modules of 6U size and generate L-band, C-band, Ku-band. The result of this study would enhance the design ability of RF module and help the frequency synthesizer design for SAR payload system.

Ultra Low Noise Hybrid Frequency Synthesizer for High Performance Radar System (고성능 레이다용 저잡음 하이브리드 주파수합성기 설계 및 제작)

  • Kim, Dong-Sik;Kim, Jong-Pil;Lee, Ju-Young;Kang, Yeon Duk;Kim, Sun-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.73-79
    • /
    • 2020
  • Modern radar system requires high spectral purity and low phase noise characteristics for very low RCS target detection and high resolution SAR (Synthetic Aperture Radar) image. This paper presents a new X-band high stable frequency synthesizer for high performance radar system, which combines DAS (Direct Analog Synthesizer) and DDS (Direct Digital Synthesizer) techniques, in order to cope with very low phase noise and high frequency agility requirements. This synthesizer offers more than 10% operating bandwidth in X-band frequency and fast agile time lower than 1 usec. Also, the phase noise at 10kHz offset is lower than -136dBc/Hz, which shows an improvement of more than 10dB compared to the current state of art frequency synthesizer. This architecture can be applied to L-band and C-band application as well. This frequency synthesizer is able to used in modern AESA (Active Electronically Scanned Array) radar system and high resolution SAR application.

Design of a CMOS IF PLL Frequency Synthesizer (CMOS IF PLL 주파수합성기 설계)

  • 김유환;권덕기;문요섭;박종태;유종근
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.598-609
    • /
    • 2003
  • This paper describes a CMOS IF PLL frequency synthesizer. The designed frequency synthesizer can be programmed to operate at various intermediate frequencies using different external LC-tanks. The VCO with automatic amplitude control provides constant output power independent of the Q-factor of the external LC-tank. The designed frequency divider includes an 8/9 or 16/17 dual-modulus prescaler and can be programmed to operate at different frequencies by external serial data for various applications. The designed circuit is fabricated using a 0.35${\mu}{\textrm}{m}$ n-well CMOS process. Measurement results show that the phase noise is 114dBc/Hz@100kHz and the lock time is less than 300$mutextrm{s}$. It consumes 16mW from 3V supply. The die area is 730${\mu}{\textrm}{m}$$\times$950${\mu}{\textrm}{m}$.

A Frequency Synthesizer for Ka band compact Radar using DDS (DDS를 이용한 Ka 대역 소형 레이다용 주파수합성기)

  • An, Se-Hwan;Lee, Man-Hee;Kim, Hong-Rak;Kwon, Jun-Beom;Choi, Young-Rak;Kim, Jong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.51-57
    • /
    • 2017
  • In this paper, we designed a frequency synthesizer using DDS (Direct Digital Synthesizer) for Ka-band compact Radar. DDS is applied to generate various waveform and to cover high-speed frequency sweep. In order to reduce size, waveform generator and Ka band frequency up-converter are integrated in one module. Proposed frequency synthesizer provides LFM(Linear Frequency Modulation) waveform and Phase modulated FMCW (Frequency Modulation Continuous Wave) waveform. It is observed that fabricated synthesizer performs $0.191{\mu}sec$ frequency switching time and -89.16 dBc/Hz phase noise at offset 1 kHz.

The Phase Noise Prediction and 1/f Noise Modeling of Frequency Synthesizer (주파수합성기의 Phase Noise 예측 및 1/f Noise Modeling)

  • 김형도;성태경;조형래
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.180-185
    • /
    • 2000
  • In this paper, we designed 2303.15MHz Sequency synthesizer for the purpose of the phase noise prediction. For the modeling of phase noise Oersted in the designed system through inooducing the noise-modeling method suggested by Lascari we analyzied a variation of phase noise as according as that of offest frequency. Especially, for the third-order system of the PLL among some kinds of phase noise generated from VCO we analyzed the aspect of 1/f-noise appearing troubles in the low frequency band. Since it is difficult to analyze mathematically 1/f-noise in the third-order system of the PLL, introducing the concept of pseudo-damping factor has made an ease of the access of the 1/f-noise variance. we showed a numerical formula of 1/f-noise variance in the third-order system of the PLL which is compared with that of 1/f-noise variance in the second-order system of the PLL

  • PDF

A CMOS Fractional-N Frequency Synthesizer for DTV Tuners (DTV 튜너를 위한 CMOS Fractional-N 주파수합성기)

  • Ko, Seung-O;Seo, Hee-Teak;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.65-74
    • /
    • 2010
  • The Digital TV(DTV) standard has ushered in a new era in TV broadcasting and raised a great demand for DTV tuners. There are many challenges in designing a DTV tuner, of which the most difficult part is the frequency synthesizer. This paper presents the design of a frequency synthesizer for DTV Tuners in a $0.18{\mu}m$ CMOS process. It satisfies the DTV(ATSC) frequency band(54~806MHz). A scheme is proposed to cover the full band using only one VCO. The VCO has been designed to operate at 1.6~3.6GHz band such that the LO pulling effect is minimized, and reliable broadband characteristics have been achieved by reducing the variations of VCO gain and frequency step. The simulation results show that the designed VCO has gains of 59~94MHz(${\pm}$17.7MHz/V,${\pm}$23%) and frequency steps of 26~42.5MHz(${\pm}$8.25MHz/V,${\pm}$24%), and a very wide tuning range of 76.9%. The designed frequency synthesizer has a phase noise of -106dBc/Hz at 100kHz offset, and the lock time is less than $10{\mu}$sec. It consumes 20~23mA from a 1.8V supply, and the chip size including PADs is 2.0mm${\times}$1.8mm.

An analysis of frequency divider ratio in N-loop PLL frequency synthesizer for CDMA communication system (부호분할다중화 통신시스템을 위한 다중루프 PLL주파수 합성기에서의 주파수분주정수에 관한 해석)

  • 김도욱;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.1
    • /
    • pp.54-62
    • /
    • 1988
  • For code division multiple access, a frequency synthesizer of elementary components is necessary in the system application of frequency hopped spread spectrum communication. This paper proposes the model of N-loop PLL frequency synthesizer to be adaptied for generating the output frequency resultes in the frequency hopping pattern and to be easy in practical application of the system. It was analyzed how the frequency divider ratio distribute, what the method to decide frequency divider ratio is and what relationship of bandwidth of BPF and degree of multiple have is also analyzed in order to hop the desired frequency output.

  • PDF