• 제목/요약/키워드: 조선 산학과 서양 수학

검색결과 15건 처리시간 0.045초

18세기 조선산학서의 대수 영역에 나타난 서양수학 표현 및 계산법 연구 (A Study of the Representation and Algorithms of Western Mathematics Reflected on the Algebra Domains of Chosun-Sanhak in the 18th Century)

  • 최은아
    • 한국학교수학회논문집
    • /
    • v.23 no.1
    • /
    • pp.25-44
    • /
    • 2020
  • 본 연구의 목적은 서양수학이 본격적으로 유입된 18세기 조선의 사회문화적 배경 하에 저슬된 조선 산학서의 대수 영역에서 서양수학의 표현과 계산법을 반영한 내용을 살펴보고, 서양식 계산법과 전통적 계산법의 공존 관계 또는 대체 양상을 분석하는 것이다. 이를 위해 18세기 산학문헌인 <구수략>, <고사신서>, <고사십이집>, <주해수용>을 중심으로 하여 <구일집>, <산학입문> 등 총 9종의 산학문헌을 분석하였다. 분석 결과, 산대 조작을 기반으로 하는 전통적인 사칙계산법이 과도기적 표현을 거쳐 유럽 수학의 필산으로 발달해가는 과정과 서양의 비례 개념과 비례식을 형식화하여 명시적으로 다루는 18세기 산학서의 공통적 변화를 확인하였다. 또한 연립일차방정식 해법의 계산식의 수학적 표현이 점진적으로 형식화되는 과정을 관찰하였다. 제곱근 계산법이 전통적인 개방술에서 증승개방법의 적용으로, 다시 유럽 산술이 반영된 제곱근을 구하는 필산으로 변화해가고 있음을 확인하였다. 이상의 18세기 조선산학 사례들은 수학의 진화적 속성과 사회문화적 속성을 이해할 수 있는 의미 있는 자료라고 할 수 있다.

조선산학의 수학적 표현의 변천에 대한 고찰 - 수와 연산, 문자와 식 영역을 중심으로 - (A study on the transition of the representations of numbers and mathematical symbols in Joseon mathematics)

  • 최은아
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • v.28 no.3
    • /
    • pp.375-394
    • /
    • 2014
  • 본 연구는 수와 연산, 문자와 식 영역을 중심으로 조선산학의 수학적 표현의 변천과정을 고찰하였다. 고찰 결과, 서양 수학의 표현 방식을 도입하기 이전에 각 영역별로 조선산학의 고유한 표현과 과도기적 표현이 존재하였음을 확인하였다. 이에 대한 근거로 세 가지를 제시하였다. 첫째, 조선산학은 한자 표기의 승법적 기수법과 산대 표기의 위치적 기수법을 병행하였으나, 한자를 사용한 위치적 기수법이라는 과도기적 표현을 거쳐 인도 아라비아 숫자를 사용한 위치적 기수법의 단계로 진행하였다. 둘째, 한자를 축약하여 연산을 표현하거나 산대 조작과정을 산대로 표기하는 방식에서 서양 산술의 연산 표현을 수용하는 단계로 진행한 과정에서 전통적인 연산 표현 방식과 유럽 필산의 표현 방식을 절충한 표현이 등장하였다. 셋째, 조선산학에서 문자와 식은 산대로 계수들을 표현하는 천원술과 방정술로 표현되었지만, 좀 더 형식화된 생략적 대수의 단계를 거쳐 서양수학의 기호적 대수의 표현방식을 수용하였다.

이상설(李相卨)의 산서 수리(算書 數理) (Lee Sang Seol's mathematics book Su Ri)

  • 이상구;홍성사;홍영희
    • 한국수학사학회지
    • /
    • v.22 no.4
    • /
    • pp.1-14
    • /
    • 2009
  • 17세기에 서양 수학이 조선에 들어온 이래 조선에 가장 큰 영향을 끼친 산서는 수리정온(數理精蘊)이었다. 19세기 말 조선에서 신교육이 시작되면서 수리정온(數理精蘊)이후의 서양 수학을 가르치게 되었다. 이 때 일본을 거쳐서 들어온 서양 수학은 주로 교과서로 나타난다. 이 논문은 독립 운동가로 잘 알려진 이상설(李相卨)의 저서인 수리(數理)를 조사하여 19세기 말 선교사를 통하여 서양 수학이 조선에 전해지는 과정을 알아본다. 특히 이상설(李相卨)이 조선 산학의 대수학 분야에서 중요한 변화와 발전을 이루어 낸 것을 밝혀낸다.

  • PDF

조선(朝鮮) 산학(算學)과 수리정온(數理精蘊) (Mathematics of Chosun Dynasty and $Sh\grave{u}\;l\breve{i}\;j\bar{i}ng\;y\grave{u}n$ (數理精蘊))

  • 홍영희
    • 한국수학사학회지
    • /
    • v.19 no.2
    • /
    • pp.25-46
    • /
    • 2006
  • 서양 수학이 조선에 전입된 과정과 그 영향을 연구한다. 초기 과정은 최석정(崔錫鼎)$(1645\sim1715)$의 구수약(九數略), 홍정하(洪正夏)$(1684\sim?)$의 구일집(九一集), 중기 과정은 황윤석(黃胤錫)$(1719\sim1791)$의 이수신편(理藪新編), 홍대용(洪大容)$(1731\sim1781)$의 주해수용(籌解需用)을 통하여 조사한다. 서양 수학은 시헌력(時憲曆)의 도입과 함께 천문학의 연구를 위하여 도입되었다. 수리정온(數理精蘊)을 가장 잘 이해한 학산(鶴山) 초부(樵夫)의 수리정온보해(數理精蘊補解)(1730?)를 연구하고 서양 수학을 구조적으로 이해한 19세기의 이상혁(李尙爀)$(1810\sim?)$, 남병길(南秉吉)$(1820\sim1869)$을 연구한다.

  • PDF

조선(朝鮮) 산서(算書) 산학계몽주해(算學啓蒙註解) (Chosun Mathematics Book Suan Xue Qi Meng Ju Hae)

  • 홍성사;홍영희
    • 한국수학사학회지
    • /
    • v.22 no.2
    • /
    • pp.1-12
    • /
    • 2009
  • 주세걸(朱世傑)의 산학계몽(算學啓蒙)은 조선 산학의 발전에 가장 큰 기여를 하였다. 19세기 중엽에 출판된 산학계몽주해(算學啓蒙註解)를 조사하여 19세기 조선 산학의 발전을 연구한다. 홍정하(洪正夏)의 구일집(九一集)의 방정식논(方程式論)과 서양 수학의 영향을 받아 구조적으로 산학계몽(算學啓蒙)을 연구하여 저술한 산학계몽주해(算學啓蒙註解)는 19세기 조선의 대수학 발전의 기초를 이룬 산서이다.

  • PDF

18세기(世紀) 초(初) 조선(朝鮮) 산학(算學) (Chosun Mathematics in the early 18th century)

  • 홍성사;홍영희
    • 한국수학사학회지
    • /
    • v.25 no.2
    • /
    • pp.1-9
    • /
    • 2012
  • 1592년과 1636년 양대 전란으로 전통적인 조선 산학의 결과는 거의 소멸되어, 17세기 중엽 조선 산학은 새로 시작할 수밖에 없었다. 조선은 같은 시기에 청으로 부터 도입된 시헌력(時憲曆, 1645)을 이해하기 위하여 서양수학에 관련된 자료를 수입하기 시작하였다. 한편 전통 산학을 위하여 김시진(金始振, 1618-1667)은 산학계몽(算學啓蒙, 1299)을 중간(重刊)하였다. 이들의 영향으로 이루어진 조태구(趙泰耉, 1660-1723)의 주서관견(籌書管見)과 홍정하(洪正夏, 1684-?)의 구일집(九一集)을 함께 조사하여 이들이 조선 산학의 발전에 새로운 전기를 마련한 것을 보인다.

조선 산학의 삼각형 (Triangles in Chosun Mathematics)

  • 장혜원
    • 한국수학사학회지
    • /
    • v.22 no.4
    • /
    • pp.41-52
    • /
    • 2009
  • 본 논문에서는 조선 시대의 산학서에서 다루어진 삼각형에 대한 내용을 고찰한다. 기하보다 대수에 대한 연구가 주를 이루었던 조선시대 산학 연구의 특성을 고려하면, 삼각형 자체에 대한 기하학적 탐구보다는 삼각형 모양의 밭의 넓이 측정 방법에 대한 설명이 기대된다. 그러나 예외적으로 직각삼각형인 구고에 대해서는 심도 있는 연구가 이루어졌고, 측정이라 하더라도 일반 삼각형에 대해서는 근삿값 수준으로 다루어진 것을 감안하면 삼각형 관련 내용에 대한 분석은 의의 있다고 생각된다. 조선의 산학서 <묵사집산법>, <구일집>, <산학입문>, <주해수용>, <산술관견>에 대한 고찰 결과, 삼각형 관련 내용은 크게 세 가지로 분류할 수 있 다. 측정의 필요가 있던 밭 모양과 관련한 도형의 측도, 측정 대상으로서의 도형으로부터 기하 연구 대상으로서의 도형으로 넘어가는 과도기적 내용, 서양 수학의 영향으로 인한 도형의 정의 및 성질에 대한 탐구와 타당화이다.

  • PDF

구의 부피에 대한 수학사적 고찰 및 교수학적 함의 (Study on the Volume of a Sphere in the Historical Perspective and its Didactical Implications)

  • 장혜원
    • 한국수학사학회지
    • /
    • v.21 no.2
    • /
    • pp.19-38
    • /
    • 2008
  • 본 연구에서는 동서양 수학사에서 다양한 방식으로 취급된 구의 부피 측도에 대해 고찰한다. 서양수학사에서 발견되는 아르키메데스, 카발리에리, 케플러의 방법에 대비하여, 동양수학사에서 구장산술, 유휘, 조충지와 조긍의 방법, 그리고 조선시대 산학서에서 다루어진 방법에 대해 알아본다. 나아가 이러한 역사적 고찰 결과를 수학 및 수학교육적 관점에서 조명한다. 특히 현행 교과서 및 교수 실제상의 문제 제기로부터 교재 구성을 위한 대안을 모색해본다.

  • PDF

남병길(南秉吉)의 방정식논(方程式論) (Nam Byung Gil and his Theory of Equations)

  • 홍성사;홍영희
    • 한국수학사학회지
    • /
    • v.20 no.2
    • /
    • pp.1-18
    • /
    • 2007
  • 19세기 조선(朝鮮) 산학자(算學者) 이상혁(李尙爀), 남병길(南秉吉)은 구장산술(九章算術), 술리정온(數理精蘊) 등을 연구한 후 송(宋), 원대(元代)의 수학을 구조적으로 연구하여 조선(朝鮮) 산학(算學)이 크게 발전하는 전기를 마련하였다. 이 논문에서는 남병길(南秉吉)의 저서 집고연단(輯古演段)과 무이해(無異解)를 조사하여 그의 방정식논(方程式論)을 연구한다. 남병길(南秉吉)은 이상혁(李尙爀)과 공동 연구를 통하여 송(宋), 원대(元代)와 서양(西洋) 수학(數學)의 방정식논(方程式論)을 함께 구조적으로 정리하였다.

  • PDF

동양의 영부족술과 서양의 가정법 (The Excess and Deficit Rule and The Rule of False Position)

  • 장혜원
    • 한국수학사학회지
    • /
    • v.18 no.1
    • /
    • pp.33-48
    • /
    • 2005
  • 가정법은 중세 서양에서 상용된 대수 방정식의 산술적 해법이며, 보통 그 근원을 중국 수학의 영부족술이라 말한다. 이와 관련하여 중국 및 조선의 산학서와 이집트, 아랍, 인도 및 서양의 수학 교재를 고찰함으로써 수학사에 있어 그 역사적 자취를 추적하고 두 가지 사실을 확인한다. 첫째, 중국의 영부족술은 일차연립방정식의 해법인 방정술과는 구별되어 일차방정식으로 해석되는 특정 수량 관계를 다루기 위한 계산 알고리즘이며, 둘째, 동양의 영부족술과 서양의 가정법의 명확한 관계는 전자에서의 가정을 포함하는 응용 부분이 후자에서의 이중 가정법과 상응한다는 것이다. 나아가 가정법의 수학적 가치를 수학 교육적 가치로 환원하기 위한 제안을 포함한다.

  • PDF