• Title, Summary, Keyword: 조선 산학과 서양 수학

Search Result 15, Processing Time 0.038 seconds

A Study of the Representation and Algorithms of Western Mathematics Reflected on the Algebra Domains of Chosun-Sanhak in the 18th Century (18세기 조선산학서의 대수 영역에 나타난 서양수학 표현 및 계산법 연구)

  • Choi, Eunah
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.1
    • /
    • pp.25-44
    • /
    • 2020
  • This study investigated the representation and algorithms of western mathematics reflected on the algebra domains of Chosun-Sanhak in the 18th century. I also analyzed the co-occurrences and replacement phenomenon between western algorithms and traditional algorithms. For this purpose, I analyzed nine Chosun mathematics books in the 18th century, including Gusuryak and Gosasibijip. The results of this study are as follows. First, I identified the process of changing to a calculation by writing of western mathematics, from traditional four arithmetical operations using Sandae and the formalized explanation for the proportional concept and proportional expression. Second, I observed the gradual formalization of mathematical representation of the solution for a simultaneous linear equation. Lastly, I identified the change of the solution for square root from traditional Gaebangsul and Jeungseunggaebangbeop to a calculation by the writing of western mathematics.

A study on the transition of the representations of numbers and mathematical symbols in Joseon mathematics (조선산학의 수학적 표현의 변천에 대한 고찰 - 수와 연산, 문자와 식 영역을 중심으로 -)

  • Choi, Eunah
    • Communications of Mathematical Education
    • /
    • v.28 no.3
    • /
    • pp.375-394
    • /
    • 2014
  • The purpose of this study is to examine the transition of mathematical representation in Joseon mathematics, which is focused on numbers and operations, letters and expressions. In Joseon mathematics, there had been two numeral systems, one by chinese character and the other by counting rods. These systems were changed into the decimal notation which used Indian-Arabic numerals in the late 19th century passing the stage of positional notation by Chinese character. The transition of the representation of operation and expressions was analogous to that of representation of numbers. In particular, Joseon mathematics represented the polynomials and equations by denoting the coefficients with counting rods. But the representation of European algebra was introduced in late Joseon Dynasty passing the transitional representation which used Chinese character. In conclusion, Joseon mathematics had the indigenous representation of numbers and mathematical symbols on our own. The transitional representation was found before the acceptance of European mathematical representations.

Lee Sang Seol's mathematics book Su Ri (이상설(李相卨)의 산서 수리(算書 數理))

  • Lee, Sang-Gu;Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.1-14
    • /
    • 2009
  • Since western mathematics and astronomy had been introduced in Chosun dynasty in the 17th century, most of Chosun mathematicians studied Shu li jing yun(數理精蘊) for the western mathematics. In the last two decades of the 19th century, Chosun scholars have studied them which were introduced by Japanese text books and western missionaries. The former dealt mostly with elementary arithmetic and the latter established schools and taught mathematics. Lee Sang Seol(1870~1917) is well known in Korea as a Confucian scholar, government official, educator and foremost Korean independence movement activist in the 20th century. He was very eager to acquire western civilizations and studied them with the minister H. B. Hulbert(1863~1949). He wrote a mathematics book Su Ri(數理, 1898-1899) which has two parts. The first one deals with the linear part(線部) and geometry in Shu li jing yun and the second part with algebra. Using Su Ri, we investigate the process of transmission of western mathematics into Chosun in the century and show that Lee Sang Seol built a firm foundation for the study of algebra in Chosun.

  • PDF

Mathematics of Chosun Dynasty and $Sh\grave{u}\;l\breve{i}\;j\bar{i}ng\;y\grave{u}n$ (數理精蘊) (조선(朝鮮) 산학(算學)과 수리정온(數理精蘊))

  • Hong Young-Hee
    • Journal for History of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.25-46
    • /
    • 2006
  • We investigate the process of western mathematics into Chosun and its influences. Its initial and middle stages are examined by Choi Suk Jung(崔錫鼎, $1645\sim1715$)'s Gu Su Ryak(九數略), Hong Jung Ha(洪正夏, $1684\sim?$)'s Gu Il Jib(九一集) and Hwang Yun Suk(黃胤錫, $1719\sim1791$)'s I Su Shin Pyun(理藪新編), Hong Dae Yong(洪大容, $1731\sim1781$)'s Ju Hae Su Yong(籌解需用), respectively. Western mathematics was transmitted for the study of the Shi xian li(時憲曆) when it was introduced in Chosun. We also analyze Su Ri Jung On Bo Hae(數理精蘊補解, 1730?) whose author studied $Sh\grave{u}\;l\breve{i}\;j\bar{i}ng\;y\grave{u}n$ most thoroughly, in particular for astronomy, and finally Lee Sang Hyuk(李尙爀, $1810\sim?$), Nam Byung Gil(南秉吉, $1820\sim1869$) who studied together structurally western mathematics.

  • PDF

Chosun Mathematics Book Suan Xue Qi Meng Ju Hae (조선(朝鮮) 산서(算書) 산학계몽주해(算學啓蒙註解))

  • Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.1-12
    • /
    • 2009
  • Zhu Shi Jie's Suan Xue Qi Meng is one of the most important books which gave a great influence to the development of Chosun Mathematics. Investigating San Hak Gye Mong Ju Hae(算學啓蒙註解) published in the middle of the 19th century, we study the development of Chosun Mathematics in the century. The author studied western mathematics together with theory of equations in Gu Il Jib (九一集) written by Hong Jung Ha(洪正夏) and then wrote the commentary, which built up a foundation on the development of Algebra of Chosun in the century.

  • PDF

Chosun Mathematics in the early 18th century (18세기(世紀) 초(初) 조선(朝鮮) 산학(算學))

  • Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.25 no.2
    • /
    • pp.1-9
    • /
    • 2012
  • After disastrous foreign invasions in 1592 and 1636, Chosun lost most of the traditional mathematical works and needed to revive its mathematics. The new calendar system, ShiXianLi(時憲曆, 1645), was brought into Chosun in the same year. In order to understand the system, Chosun imported books related to western mathematics. For the traditional mathematics, Kim Si Jin(金始振, 1618-1667) republished SuanXue QiMeng(算學啓蒙, 1299) in 1660. We discuss the works by two great mathematicians of early 18th century, Cho Tae Gu(趙泰耉, 1660-1723) and Hong Jung Ha(洪正夏, 1684-?) and then conclude that Cho's JuSeoGwanGyun(籌 書管見) and Hong's GuIlJib(九一集) became a real breakthrough for the second half of the history of Chosun mathematics.

Triangles in Chosun Mathematics (조선 산학의 삼각형)

  • Chang, Hye-Won
    • Journal for History of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.41-52
    • /
    • 2009
  • This study investigates a mathematical subject, 'triangles' in mathematics books of Chosun Dynasty, in special Muk Sa Jib San Bub(默思集算法), Gu Il Jib(九一集), San Hak Ib Mun(算學入門), Ju Hae Su Yong(籌解需用), and San Sul Gwan Gyun(算術管見). It is likely that they apt to avoid manipulating general triangles except the right triangles and the isosceles triangles etc. Our investigation says that the progress of triangle-related contents in Chosun mathematics can fall into three stages: measurement of the triangle-shaped fields, transition from the object of measurement to the object of geometrical study, and examination of definition, properties and validation influenced by western mathematics.

  • PDF

Study on the Volume of a Sphere in the Historical Perspective and its Didactical Implications (구의 부피에 대한 수학사적 고찰 및 교수학적 함의)

  • Chang, Hye-Won
    • Journal for History of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.19-38
    • /
    • 2008
  • This study aims to investigate the evolution of calculating the volume of a sphere in eastern and western mathematical history. In western case, Archimedes', Cavalieri's and Kepler's approaches, and in eastern case, Nine Chapters';, Liu Hui's and Zus' approaches are worthy of noting. The common idea of most of these approaches is the infinitesimal concept corresponding to Cavalieri's or Liu-Zu's principle which would developed to the basic idea of Calculus. So this study proposes an alternative to organization of math-textbooks or instructional procedures for teaching the volume of a sphere based on the principle.

  • PDF

Nam Byung Gil and his Theory of Equations (남병길(南秉吉)의 방정식논(方程式論))

  • Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.1-18
    • /
    • 2007
  • In the middle of 19th century, Chosun mathematicians Nam Byung Gil(南秉吉) and Lee Sang Hyuk(李尙爀) studied mathematical structures developed in Song(宋) and Yuan(元) eras on top of their early studies on Jiu zhang suan shu(九章算術) and Shu li jing yun(數理精蘊). Their studies gave rise to a momentum for a prominent development of Chosun mathematics in the century. In this paper, we investigate Nam Byung Gil's JipGoYunDan(輯古演段) and MuIHae(無異解) and then study his theory of equations. Through a collaboration with Lee, Sang Hyuk, he consolidated the eastern and western structure of theory of equations.

  • PDF

The Excess and Deficit Rule and The Rule of False Position (동양의 영부족술과 서양의 가정법)

  • Chang Hyewon
    • Journal for History of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.33-48
    • /
    • 2005
  • The Rule of False Position is known as an arithmetical solution of algebraical equations. On the other hand, the Excess-Deficit Rule is an algorithm for calculating about excessive or deficient quantitative relations, which is found in the ancient eastern mathematical books, including the nine chapters on the mathematical arts. It is usually said that the origin of the Rule of False Position is the Excess-Deficit Rule in ancient Chinese mathematics. In relation to these facts, we pose two questions: - As many authors explain, the excess-deficit rule is a solution of simultaneous linear equations? - Which relation is there between the two rules explicitly? To answer these Questions, we consider the Rule of Single/Double False Position and research the Excess-Deficit Rule in some ancient mathematical books of Chosun Dynasty that was heavily affected by Chinese mathematics. And we pursue their historical traces in Egypt, Arab and Europe. As a result, we can make sure of the status of the Excess-Deficit Rule differing from the Rectangular Arrays(the solution of simultaneous linear equations) and identify the relation of the two rules: the application of the Excess-Deficit Rule including supposition in ancient Chinese mathematics corresponds to the Rule of Double False Position in western mathematics. In addition, we try to appreciate didactical value of the Rule of False Position which is apt to be considered as a historical by-product.

  • PDF