• Title/Summary/Keyword: 접합재료

Search Result 1,308, Processing Time 0.025 seconds

Application of Laser Surface Treatment Technique for Adhesive Bonding of Carbon Fiber Reinforced Composites (탄소복합재 접착공정을 위한 CFRP의 레이저 표면처리 기법의 적용)

  • Hwang, Mun-Young;Kang, Lae-Hyong;Huh, Mongyoung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.371-376
    • /
    • 2020
  • The adhesive strength can be improved through surface treatment. The most common method is to improve physical bonding by varying the surface conditions. This study presents the effect of laser surface treatment on the adhesive strength of CFRP. The surface roughness was patterned using a 1064 nm laser. The effects of the number of laser shots and the direction and length of the pattern on the adhesion of the CFRP/CFRP single joint were investigated through tensile tests. Tests according to ASTM D5868 were performed, and the bonding mechanism was determined by analyzing the damaged surface after a fracture. The optimized number of the laser shots and the optimized depth of the roughness should be required to increase the bonding strength on the CFRP surface. When considering the shear stress in the tensile direction, the roughness pattern in the direction of 45° that increases the length of the fracture path in the adhesive layer resulted in an increase of the adhesive strength. The surface treatment of the bonding surface using a laser is a suitable method to acquire a mechanical bonding mechanism and improve the bonding strength of the CFRP bonding joint. The study on the optimized laser process parameters is required for utilizing the benefits of laser surface processing.

Effect of Post Heat Treatment Temperature on Interface Diffusion Layer and Bonding Force in Roll Cladded Ti/Mild steel/Ti Material (압연 클래드된 Ti/Mild steel/Ti 재의 계면확산층과 접합력에 미치는 후열처리온도의 영향)

  • Lee, Sangmok;Kim, Su-Min;We, Se-Na;Bae, Dong-Hyun;Lee, Geun-An;Lee, Jong-Sup;Kim, Yong-Bae;Bae, Dong-Su
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.316-323
    • /
    • 2012
  • The aim of this study is to investigate the effect of post heat treatment on bonding properties of roll cladded Ti/MS/Ti materials. First grade Ti sheets and SPCC mild steel sheets were prepared and then Ti/MS/Ti clad materials were fabricated by a cold rolling and post heat treatment process. Microstructure and point analysis of the Ti/MS interfaces were performed using the SEM and EDX Analyser. Diffusion bonding was observed at the interfaces of Ti/MS. The thickness of the diffusion layer increased with post heat treatment temperature and the diffusion layer was verified as having $({\epsilon}+{\zeta})+({\zeta}+{\beta}-Ti)$ intermetallic compounds at $700^{\circ}C$ and an $({\zeta}+{\beta}-Ti)$ intermetallic compound at $800^{\circ}C$, respectively. The micro Knoop hardness of mild steel decreased with post heat treatment temperature; however, those of Ti decreased at a range of $500{\sim}600^{\circ}C$ and showed a uniform value until $800^{\circ}C$ and then increased rapidly up to $900^{\circ}C$. The micro Knoop hardness value of the diffusion layer increased up to $700^{\circ}C$ and then saturated with post heat treatment. A T-type peel test was used to estimate the bonding forces of Ti/Mild steel interfaces. The bonding forces decreased up to $800^{\circ}C$ and then increased slightly with post heat treatment. The optimized temperature ranges for post heat treatment were $500{\sim}600^{\circ}C$ to obtain the proper formability for an additional plastic deformation process.

Restoration of the Chimi Excavated from the Busosan Temple Site in Buyeo and Study of Its Production Techniques (부여 부소산사지 출토 치미의 재 복원을 통한 제작기법)

  • Hwang, Hyunsung;Na, Ahyoung
    • Conservation Science in Museum
    • /
    • v.27
    • /
    • pp.1-22
    • /
    • 2022
  • A chimi(a roof ridge decoration) excavated from the Busosan Temple Site in Buyeo was restored in 1978 at the Buyeo Museum. The gypsum restoration material had deteriorated over time and part of it was seriously damaged and unable to bear the weight of the chimi. The chimi features traces of emergency treatment revealing that the inside of the body and some portions of the tail were reinforced several times using epoxy resin. A condition survey performed in preparation for its transfer for an exhibition found the lower body and wings of the chimi to be highly vulnerable and it was determined that the chimi needed further restoration. The dismantling of the chimi for restoration revealed several elements that provide clues to the production techniques applied by its makers, so they were subjected to inspection. This study explores the production techniques used in the chimi from the Busosan Temple Site that were revealed during the process of dismantling it for restoration. The chimi was inspected using 3D scanning and its rigid vertical shape was restored to a natural form based on the production techniques identified during the dismantling process. The existing restoration material was replaced to improve durability. 3D printed elements were produced based on 3D modelling and were joined to the original chimi to correct its shape and fill in the missing parts, restoring the chimi to its original appearance.

Conservation Treatment and Production Technique of the Golden Crown (Treasure No. 339) Excavated from Seobongchong Tomb in Gyeongju (경주 서봉총 출토 금관(보물 339호)의 보존처리와 제작기법 연구)

  • Kwon, Yoonmi
    • Conservation Science in Museum
    • /
    • v.26
    • /
    • pp.83-182
    • /
    • 2021
  • This study summarized the results of the conservation treatment and investigation on the production method of the golden crown (Treasure No. 339) excavated from Tomb No. 129 (also known as Seobongchong Tomb) in Noseo-dong, Gyeongju-si, Gyeongsangbuk-do Province. The golden crown from Seobongchong Tomb was discovered during the excavations conducted by the Museum of the Government-General of Korea in 1926 during the Japanese colonial era. It is currently in the collection of the National Museum of Korea. A total of six Silla golden crowns have survived in Korea, among which the crown from Seobongchong Tomb is the only example with a dome-shaped hemispherical decoration attached with a bird ornament while otherwise showing the typical features of Silla crowns. The crown had been repaired following its excavation using metallic materials and adhesives, but due to the partial deformation and damage brought about by the repair materials, it required further conservation treatment. This article describes in detail the overall process of the conservation treatment and the restoration of the original form of the golden crown from Seobongchong Tomb, particularly the method of reinforcing the joints to secure the stability of the crown. It presents the characteristics of the crown's production as revealed in the investigation during the conservation treatment, and further analyzes the relationship of this crown from Seobongchong Tomb with other Silla crowns through a comparison of their production techniques. The investigation revealed that the crown was primarily decorated with golden sequins at the time of its production. At a later point some of the sequins in the upright ornament were replaced with comma-shaped jade beads and additional comma-shaped jade beads were added to the headband. In order to determine if such modifications to the decoration had occurred with other Silla crowns, the decoration of the six extant Silla golden crowns were investigated. The crown from Cheonmachong Tomb features traces of this same modification to the decoration and possesses other similarities with the crown from Seobongchong Tomb.

Delamination Prediction of Semiconductor Packages through Finite Element Analysis Reflecting Moisture Absorption and Desorption according to the Temperature and Relative Humidity (유한요소 해석을 통해 온도와 상대습도에 따른 수분 흡습 및 탈습을 반영한 반도체 패키지 구조의 박리 예측)

  • Um, Hui-Jin;Hwang, Yeon-Taek;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • Recently, the semiconductor package structures are becoming thinner and more complex. As the thickness decrease, interfacial delamination due to material mismatch can be further maximized, so the reliability of interface is a critical issue in industry field. Especially, the polymers, which are widely used in semiconductor packaging, are significantly affected by the temperature and moisture. Therefore, in this study, the delamination prediction at the interface of package structure was performed through finite element analysis considering the moisture absorption and desorption under the various temperature conditions. The material properties such as diffusivity and saturated moisture content were obtained from moisture absorption test. The hygro-swelling coefficients of each material were analyzed through TMA and TGA after the moisture absorption. The micro-shear test was conducted to evaluate the adhesion strength of each interface at various temperatures considering the moisture effect. The finite element analysis of interfacial delamination was performed that considers both deformation due to temperature and moisture absorption. Consequently, the interfacial delamination was successfully predicted in consideration of the in-situ moisture desorption and temperature behavior during the reflow process.

A Study on Improved Open-Circuit Voltage Characteristics Through Bi-Layer Structure in Heterojunction Solar Cells (이종접합 태양전지에서의 Bi-Layer 구조를 통한 향상된 개방전압특성에 대한 고찰)

  • Kim, Hongrae;Jeong, Sungjin;Cho, Jaewoong;Kim, Sungheon;Han, Seungyong;Dhungel, Suresh Kumar;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.603-609
    • /
    • 2022
  • Passivation quality is mainly governed by epitaxial growth of crystalline silicon wafer surface. Void-rich intrinsic a-Si:H interfacial layer could offer higher resistivity of the c-Si surface and hence a better device efficiency as well. To reduce the resistivity of the contact area, a modification of void-rich intrinsic layer of a-Si:H towards more ordered state with a higher density is adopted by adapting its thickness and reducing its series resistance significantly, but it slightly decreases passivation quality. Higher resistance is not dominated by asymmetric effects like different band offsets for electrons or holes. In this study, multilayer of intrinsic a-Si:H layers were used. The first one with a void-rich was a-Si:H(I1) and the next one a-SiOx:H(I2) were used, where a-SiOx:H(I2) had relatively larger band gap of ~2.07 eV than that of a-Si:H (I1). Using a-SiOx:H as I2 layer was expected to increase transparency, which could lead to an easy carrier transport. Also, higher implied voltage than the conventional structure was expected. This means that the a-SiOx:H could be a promising material for a high-quality passivation of c-Si. In addition, the i-a-SiOx:H microstructure can help the carrier transportation through tunneling and thermal emission.

Interpretation of Making Techniques through Surface Characteristic Analysis and Non-destructive Diagnosis for the Gilt-bronze Seated Buddha in Dangjin Sinamsa Temple, Korea (당진 신암사 금동여래좌상의 표면특성 분석과 비파괴 정밀진단을 통한 제작기술 해석)

  • CHOI Ilkyu ;YANG Hyeri ;HAN Duru;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.1
    • /
    • pp.100-116
    • /
    • 2023
  • The Sinamsa Temple was built in the late Goryeo Dynasty and a gilt-bronze seated Buddha is enshrined in Geungnakjeon hall in the precinct. Various damages occurred in the gilt layer of the Buddha, such as peeling of the gilt layer and deteriorating gloss. In the study, the conservation conditions of the inside and outside on the statue were accurately investigated, and the making technique was interpreted through the material characteristics and non-destructive diagnosis of the statue. As a result, it is estimated that gold-gilding layer is pure gold, coloration pigment of black is carbon, green is malachite, atacamite and verdigris, red is red lead and cinnabar, respectively. In the deterioration evaluation, peeling, cracking, break out and exfoliation of the gilt layer are confirmed as damages, but the conservation condition is relatively wholesome. However, the gloss of the gilt layer is calculated to be wider in the poorer part than the maintenance part. The ultrasonic velocity of the statue was calculated to be 1,230 to 3,987 (mean 2,608) m/s and showed a relatively wide range. In infrared thermography, peeling was not confirmed, and no special bonding marks were found. In endoscope, some biological damage and corrosion were observed on the surface of the internal metal, and sealed artifacts were identified. Manufacturing technique based on the study, it is considered that the gilt-bronze seated Buddha was cast at once, and the mold was inverted to inject molten metal.

Growth of hexagonal Si epilayer on 4H-SiC substrate by mixed-source HVPE method (혼합 소스 HVPE 방법에 의한 4H-SiC 기판 위의 육각형 Si 에피층 성장)

  • Kyoung Hwa Kim;Seonwoo Park;Suhyun Mun;Hyung Soo Ahn;Jae Hak Lee;Min Yang;Young Tea Chun;Sam Nyung Yi;Won Jae Lee;Sang-Mo Koo;Suck-Whan Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.45-53
    • /
    • 2023
  • The growth of Si on 4H-SiC substrate has a wide range of applications as a very useful material in power semiconductors, bipolar junction transistors and optoelectronics. However, it is considerably difficult to grow very fine crystalline Si on 4H-SiC owing to the lattice mismatch of approximately 20 % between Si and 4H-SiC. In this paper, we report the growth of a Si epilayer by an Al-related nanostructure cluster grown on a 4H-SiC substrate using a mixed-source hydride vapor phase epitaxy (HVPE) method. In order to grow hexagonal Si on the 4H-SIC substrate, we observed the process in which an Al-related nanostructure cluster was first formed and an epitaxial layer was formed by absorbing Si atoms. From the FE-SEM and Raman spectrum results of the Al-related nanostructure cluster and the hexagonal Si epitaxial layer, it was considered that the hexagonal Si epitaxial layer had different characteristics from the general cubic Si structure.

Effects of implant collar design on marginal bone and soft tissue (임플란트의 collar design이 변연골과 연조직에 미치는 영향)

  • Yoo, Hyun-Sang;Kang, Sun-Nyo;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the effects of implant collar design on marginal bone change and soft tissue response by an animal test. Materials and methods: Two types of Implant (Neobiotech Co. Seoul, Korea) that only differs in collar design were planted on two healthy Beagle dogs. The implants were divided into two groups, the first group with a beveled collar (Bevel Group) and the second group with "S" shaped collar (Bioseal group). Standardized intraoral radiographs were used to investigate the mesio-distal change of the marginal bone. Histological analysis was done to evaluate the bucco-lingual marginal bone resorption and the soft tissue response adjacent to the implant. Mann-Whitney test was done to compare the mesio-distal marginal bone change at equivalent time for taking the radiographs and the tissue measurements between the groups. Results: Radiographic and histological analysis showed that there was no difference in marginal bone change between the two groups (P>.05). Histological analysis showed Bioseal group had more rigid connective tissue attachment than the Bevel group. There was no difference in biological width (P>.05). Bevel group showed significantly longer junctional epithelium attachment and Bioseal group showed longer connective tissue attachment (P<.05). Conclusion: For three months there were no differences in marginal bone change between the Bevel group and the Bioseal group. As for the soft tissue adjacent to the implant, Bioseal group showed longer connective tissue attachment while showing shorter junctional epithelium attachment. There were no differences in biologic width.

A Study on the Influence of Finishing and Polishing Methods on the Gap between Denture Base Resin and Soft Liner (의치의 마무리와 연마법이 의치상 레진과 연성 이장재 간의 공극에 미치는 영향에 관한 연구)

  • Jung, Seung-Hwan;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.325-335
    • /
    • 2008
  • The junction between resilient denture liner and the denture base is difficult to finish and polish due to difference of the physical property of the materials. Gaps tend to be formed during finishing and polishing procedures. The purpose of this study was measuring the width of junctional gap between $Molloplast-B^{(R)}$ and denture base material after finishing and polishing procedure, and evaluating the effect of method and direction on gap width. $Molloplast-B^{(R)}$ was processed (according to the manufacturer's instruction) against Lucitone $199^{(R)}$ acrylic resin. 50 specimens were fabricated with a raised center section. All of specimens were examined and photographed with a stereoscopic microscope(x120), and the largest gap along the junction of $Molloplast-B^{(R)}$ and acrylic resin on each specimen was measured. One-way analysis of variance(ANOVA) and independent t-test at 95% confidence level were used to analyze the data and to compare groups. The results of this study were as follows. In comparison with finishing tools, the gap width was the largest in $Molloplast^{(R)}$-Cutter and the smallest in FSQ-cross cut bur. There was statistically significant difference between FSQ-cross cut bur and $Molloplast^{(R)}$-Cutter(p<0.05). There was no significant difference in gap width between the direction of polishing. The mean value of gap width was the smallest in case of no polishing, and the largest in case of polishing with pumice & tin oxide. There was statistically significant difference between pumice and pumice & tin oxide. From the results, it is concluded that the use of $Molloplast^{(R)}$-Cutter in clinic need serious consideration even though it has good cutting ability. Further careful study is needed for finishing and polishing methods for decreasing gap width in junction of two materials.