DOI QR코드

DOI QR Code

Delamination Prediction of Semiconductor Packages through Finite Element Analysis Reflecting Moisture Absorption and Desorption according to the Temperature and Relative Humidity

유한요소 해석을 통해 온도와 상대습도에 따른 수분 흡습 및 탈습을 반영한 반도체 패키지 구조의 박리 예측

  • Um, Hui-Jin (Department of Mechanical Convergence Engineering, Hanyang University) ;
  • Hwang, Yeon-Taek (Department of Mechanical Convergence Engineering, Hanyang University) ;
  • Kim, Hak-sung (Department of Mechanical Convergence Engineering, Hanyang University)
  • 엄희진 (한양대학교 융합기계공학과) ;
  • 황연택 (한양대학교 융합기계공학과) ;
  • 김학성 (한양대학교 융합기계공학과)
  • Received : 2022.09.08
  • Accepted : 2022.09.30
  • Published : 2022.09.30

Abstract

Recently, the semiconductor package structures are becoming thinner and more complex. As the thickness decrease, interfacial delamination due to material mismatch can be further maximized, so the reliability of interface is a critical issue in industry field. Especially, the polymers, which are widely used in semiconductor packaging, are significantly affected by the temperature and moisture. Therefore, in this study, the delamination prediction at the interface of package structure was performed through finite element analysis considering the moisture absorption and desorption under the various temperature conditions. The material properties such as diffusivity and saturated moisture content were obtained from moisture absorption test. The hygro-swelling coefficients of each material were analyzed through TMA and TGA after the moisture absorption. The micro-shear test was conducted to evaluate the adhesion strength of each interface at various temperatures considering the moisture effect. The finite element analysis of interfacial delamination was performed that considers both deformation due to temperature and moisture absorption. Consequently, the interfacial delamination was successfully predicted in consideration of the in-situ moisture desorption and temperature behavior during the reflow process.

최근 반도체 패키지 구조는 점점 더 얇아지고 복잡해지고 있다. 두께가 얇아짐에 이종 계면에서 물성차이에 의한 박리는 심화될 수 있으며 따라서 계면의 신뢰성이 패키징 설계에 중요한 요소라 할 수 있다. 특히, 반도체 패키징에 많이 사용되는 폴리머는 온도와 수분에 영향을 크게 받기 때문에 환경에 따른 물성 변화 고려가 필수적이다. 따라서, 본 연구에서는 다양한 온도조건에서 수분의 흡습과 탈습을 모두 고려한 패키지 구조의 계면 박리 예측을 유한 요소 해석을 통해 수행하였다. 확산계수와 포화 수분 함량과 같은 재료의 물성은 흡습 실험을 통해 확보하였으며, 흡습 이후 TMA 와 TGA 를 통하여 각 재료의 수분 팽창 계수를 확보하였다. 각 계면의 접합 강도 평가를 위해 수분의 영향을 고려하여 다양한 온도 조건에서 마이크로 전단 실험을 수행하였다. 이러한 물성을 바탕으로 온도와 수분에 의해 발생하는 변형을 모두 고려한 패키지 박리 예측 해석을 수행하였으며, 결과적으로 리플로우 공정 동안의 실시간 수분 탈습 거동을 고려한 계면 박리 예측을 성공적으로 수행하였다.

Keywords

Acknowledgement

This work was supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government(MOTIE)(20202020800360, Innovative Energy Remodeling Total Technologies(M&V, Design, Package Solutions, and Testing & Verifications Technologies) for the Aging Public Buildings). Also, this work was supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government (MOTIE)(20212020800090, Development and Demonstration of Energy-Efficiency Enhanced Technology for TemperatureControlled Transportation and Logistics Center).

References

  1. E. R. Hnatek, "Integrated circuit quality and reliability", CRC Press, 808 (1995).
  2. A. S. Oates, "Interconnect Reliability Challenges for Technology Scaling: A Circuit Focus", 2016 IEEE International Interconnect Technology Conference / Advanced Metallization Conference (IITC/AMC), IEEE, 16140092 (2016).
  3. X. J. Fan and E. Suhir, "Moisture sensitivity of plastic packages of IC devices", Springer, USA (2010).
  4. A. A. O. Tay, "Modeling of interfacial delamination in plastic IC packages under hygrothermal loading", J. Electron. Packag., 127(3), 265-275 (2005).
  5. X. Fan, G. Q. Zhang, W. D. van Driel, and L. J. Ernst, "Interfacial delamination mechanisms during soldering reflow with moisture preconditioning", IEEE Transactions on Components and Packaging Technologies, 31(2), 252-259 (2008). https://doi.org/10.1109/TCAPT.2008.921629
  6. A. A. O. Tay and T. Y. Lin, "Influence of temperature, humidity, and defect location on delamination in plastic IC packages", IEEE Transactions on Components and Packaging Technologies, 22(4), 512-518 (1999). https://doi.org/10.1109/6144.814966
  7. S. K. Tran, D. L. Questad, and B. G. Sammakia, "Adhesion issues in flip-chip on organic modules", IEEE Transactions on Components and Packaging Technologies, 22(4), 519-524 (1999). https://doi.org/10.1109/6144.814967
  8. S. Yoon, B. Han, S. Cho, and C. -S. Jang, "Non-linear finite element analysis for electronic packages subjected to combined hygroscopic and thermo-mechanical stresses", 2005 7th Electronic Packaging Technology Conference, IEEE, 569-574 (2005).
  9. D. K. Shin, J. J. Lee, C. K. Yoon, G. J. Lee, J. K. Hong, and N. S. Kim, "Development of single cantilever beam method to measure the adhesion of thin film adhesive on silicon chip", Engineering Fracture Mechanics, 133, 179-190 (2015).
  10. X. Chen, S. Zhao, and L. Zhai, "Moisture absorption and diffusion characterization of molding compound", J. Electron. Packag., 127(4), 460-465 (2005). https://doi.org/10.1115/1.2065707
  11. Z. Huo, M. Mohamed, J. R. Nicholas, X. Wang, and K. Chandrashekhara, "Experimentation and simulation of moisture diffusion in foam-cored polyurethane sandwich structure", Journal of Sandwich Structures & Materials, 18(1), 30-49 (2016). https://doi.org/10.1177/1099636215582218
  12. C. -H. Shen and G. S. Springer, "Moisture absorption and desorption of composite materials", Journal of Composite Materials, 10(1), 2-20 (1976). https://doi.org/10.1177/002199837601000101
  13. H. -S. Kim, J. Huh, and J. Ryu, "Investigation of moistureinduced delamination failure in a semiconductor package via multi-scale mechanics", Journal of Physics D: Applied Physics, 44(3), 034007 (2010).
  14. H. -S. Kim and H. G. Song, "Investigation of moistureinduced failures of stacked-die package", Microelectronics Reliability, 47(9-11), 1673-1679 (2007). https://doi.org/10.1016/j.microrel.2007.07.014
  15. L. Ma, R. Joshi, K. K. Newman, and X. Fan, "Improved finite element modeling of moisture diffusion considering discontinuity at material interfaces in electronic packages", 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), IEEE, 18990801 (2019).