Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.6.9

A Study on Improved Open-Circuit Voltage Characteristics Through Bi-Layer Structure in Heterojunction Solar Cells  

Kim, Hongrae (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Jeong, Sungjin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Cho, Jaewoong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Kim, Sungheon (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University)
Han, Seungyong (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University)
Dhungel, Suresh Kumar (College of Information and Communication Engineering, Sungkyunkwan University)
Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.6, 2022 , pp. 603-609 More about this Journal
Abstract
Passivation quality is mainly governed by epitaxial growth of crystalline silicon wafer surface. Void-rich intrinsic a-Si:H interfacial layer could offer higher resistivity of the c-Si surface and hence a better device efficiency as well. To reduce the resistivity of the contact area, a modification of void-rich intrinsic layer of a-Si:H towards more ordered state with a higher density is adopted by adapting its thickness and reducing its series resistance significantly, but it slightly decreases passivation quality. Higher resistance is not dominated by asymmetric effects like different band offsets for electrons or holes. In this study, multilayer of intrinsic a-Si:H layers were used. The first one with a void-rich was a-Si:H(I1) and the next one a-SiOx:H(I2) were used, where a-SiOx:H(I2) had relatively larger band gap of ~2.07 eV than that of a-Si:H (I1). Using a-SiOx:H as I2 layer was expected to increase transparency, which could lead to an easy carrier transport. Also, higher implied voltage than the conventional structure was expected. This means that the a-SiOx:H could be a promising material for a high-quality passivation of c-Si. In addition, the i-a-SiOx:H microstructure can help the carrier transportation through tunneling and thermal emission.
Keywords
Bi-layer; a-Si:H; $a-SiO_x:H$; Stack layer; Wide bandgap; SHJ solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, IEEE J. Photovolt., 4, 96 (2014). [Doi: https://doi.org/10.1109/JPHOTOV.2013.2282737]   DOI
2 M. Z. Burrows, U. K. Das, R. L. Opila, S. De Wolf, and R. W. Birkmire, "Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation," J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 26, 683 (2008). [Doi: https://doi.org/10.1116/1.2897929]   DOI
3 M. Sharma, J. Panigrahi, and V. K. Komarala, Nanoscale Adv., 3, 3373 (2021). [Doi: https://doi.org/10.1039/D0NA00791A]   DOI
4 J. P. Seif, A. Descoeudres, M. Filipic, F. Smole, M. Topic, Z. C. Holman, S. D. Wolf, and C. Ballif, J. Appl. Phys., 115, 024502 (2014). [Doi: https://doi.org/10.1063/1.4861404]   DOI
5 J. Fang, Z. Chen, G. Hou, F. Wang, X. Chen, C. Wei, G. Wang, J. Sun, D. Zhang, Y. Zhao, and X. Zhang, Sol. Energy Mater. Sol. Cells., 136, 172 (2015). [Doi: https://doi.org/10.1016/j.solmat.2015.01.014]   DOI
6 T. Ruan, M. Qu, J. Wang, Y. He, X. Xu, C. Yu, Y. Zhang, and H. Yan, J. Mater. Sci.: Mater. Electron., 30, 13330 (2019). [Doi: https://doi.org/10.1007/s10854-019-01700-7]   DOI
7 J. Shi and Z. C. Holman, 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), (Washington, DC, USA, 2017) pp. 1820-1823. [Doi: https://doi.org/10.1109/PVSC.2017.8366193]   DOI
8 D. Deligiannis, J. van Vliet, R. Vasudevan, R.A.C.M.M. van Swaaij, and M. Zeman, J. Appl. Phys., 121, 085306 (2017). [Doi: https://doi.org/10.1063/1.4977242]   DOI
9 K. Carstens and M. Dahlinger, J. Appl. Phys., 119, 185303 (2016). [Doi: https://doi.org/10.1063/1.4948945]   DOI
10 G. Ahmad, S. Mandal, A. K. Barua, T. K. Bhattacharya, and J. N. Roy, IEEE J. Photovolt., 7, 414 (2017). [Doi: https://doi.org/10.1109/JPHOTOV.2016.2642644]   DOI
11 J. Wang, X. Ru, T. Ruan, Y. Hu, Y. Zhang, and H. Yan, J. Mater. Sci.: Mater. Electron., 32, 25327 (2021). [Doi: https://doi.org/10.1007/s10854-021-06991-3]   DOI
12 M. Rana, C. Banerjee, and P. Chowdhury, Appl. Phys. A, 127, 192 (2021). [Doi: https://doi.org/10.1007/s00339-021-04322-1]   DOI
13 Y. Yang, W. Liu, L. Zhang, S. Huang, X. Li, K. Jiang, Z. Li, Z. Yan, S. Lan, X. Wu, Z. Ma, Y. Zhou, and Z. Liu, Mater. Lett., 309, 131360 (2022). [Doi: https://doi.org/10.1016/j.matlet.2021.131360]   DOI
14 Y. Tao and A. Rohatgi, Nanostructured Solar Cells, (Tech, 2017) pp. 93-115. [Doi: https://doi.org/10.5772/65023]   DOI
15 J. Linke, M. A. Fazio, D. Cavalcoli, and B. Terheiden, Sol. Energy Mater. Sol. Cells, 187, 104 (2018). [Doi: https://doi.org/10.1016/j.solmat.2018.07.024]   DOI
16 D. P. Pham, S. Lee, Y. Kim, and J. Yi, J. Phys. Chem. Solids, 154, 110059 (2021). [Doi: https://doi.org/10.1016/j.jpcs.2021.110059]   DOI
17 W. Long, S. Yin, F. Peng, M. Yang, L. Fang, X. Ru, M. Qu, H. Lin, and X. Xu, Sol. Energy Mater. Sol. Cells., 231, 111291 (2021). [Doi: https://doi.org/10.1016/j.solmat.2021.111291]   DOI