• Title/Summary/Keyword: 저잡음증폭기

Search Result 320, Processing Time 0.027 seconds

A Low-Noise High Performance Amplifier for Low Input Signals (저입력신호를 위한 저잡음 고성능 증폭기)

  • 이대영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.4
    • /
    • pp.17-24
    • /
    • 1972
  • A simply constructed and inexpensive amplifier that exhibits unusually low noise is studied. The high-performance differential amplifier combines high input impedence, adjustable gain, low in put noise and low output impedance. The amplifier is particularly useful in applications which call for large amplificaions of very low level signals.

  • PDF

A 0.18-μm CMOS Low-Power and Wideband LNA Using LC BPF Loads (광대역 LC 대역 통과 필터를 부하로 가지는 0.18-μm CMOS 저전력/광대역 저잡음 증폭기 설계)

  • Shin, Sang-Woon;Seo, Yong-Ho;Kim, Chang-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.76-80
    • /
    • 2011
  • This paper has proposed a 3~5 GHz low-power and wideband LNA(Low Noise Amplifier), which has been implemented in a 0.18-${\mu}m$ CMOS technology. The proposed LNA has basically the noise-cancelling topology to achieve a balun-function, wideband input matching, and relative low noise figure. In addition, it has utilized a 2nd-order LC-band-pass filter(BPF) as its output load to achieve higher power gain and lower noise figure with the lowest dc power consumption among previously reported works. The proposed amplifier consumes only 3.94 mA from a 1.8 V supply voltage. The simulation results show a power gain of more than +17 dB, a noise figure of less than +4 dB, and an input IP3 of -15.5 dBm.

Design of UWB CMOS Low Noise Amplifier Using Inductor Peaking Technique (인덕터 피킹기법을 이용한 초광대역 CMOS 저잡음 증폭기 설계)

  • Sung, Young-Kyu;Yoon, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.158-165
    • /
    • 2013
  • In this paper, a new circuit topology of an ultra-wideband (UWB) 3.1-10.6GHz CMOS low noise amplifier is presented. The proposed UWB low noise amplifier is designed utilizing RC feedback and LC filter networks which can provide good input impedance matching. In this design, the current-reused topology is adopted to reduce the power consumption and the inductor-peaking technique is applied for the purpose of bandwidth extension. The performance results of this UWB low noise amplifier simulated in $0.18-{\mu}m$ CMOS process technology exhibit a power gain of 14-14.9dB, an input matching of better than -10.8dB, gain flatness of 0.9dB, and a noise figure of 2.7-3.3dB in the frequency range of 3.1-10.6GHz. In addition, the input IP3 is -5dBm and the power consumption is 12.5mW.

A $2.1{\sim}2.5\;GHz$ variable gain LNA with a shunt feed-back (병렬 피드백을 사용하여 $2.1{\sim}2.5\;GHz$ 대역에서 이득 제어가 가능한 저잡음 증폭기의 설계)

  • Hwang, Yong-Seok;Yoo, Hyung-Joun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.54-61
    • /
    • 2007
  • A variable gain low noise amplifier (VG-LNA) implemented in TSMC 0.18 um process is presented. This VG-LNA is designed of two stage amplifier, and its gain is controlled by the shunt feedback loop composed of a gain control transistor (GCT) and a coupling capacitor in second stage. The channel resistance of GCT in the shunt feedback loop influences the input and output stages of a second stage by the Miller effect. Total gain of the proposed VG-LNA is changed by two factors, the load impedance reduction and the interstage mismatch by controlling the channel resistance of the GCT. Consequently, by adding a shunt feedback with a gain control transistor, this proposed VG-LNA achieves both wide gain tuning range of 37 dB and continuous gain control simultaneously.

Design of 94-GHz High-Gain Differential Low-Noise Amplifier Using 65-nm CMOS (65-nm CMOS 공정을 이용한 94 GHz 고이득 차동 저잡음 증폭기 설계)

  • Seo, Hyun-woo;Park, Jae-hyun;Kim, Jun-seong;Kim, Byung-sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.393-396
    • /
    • 2018
  • Herein, a 94-GHz low-noise amplifier (LNA) using the 65-nm CMOS process is presented. The LNA is composed of a four-stage differential common-source amplifier and impedance matching is accomplished with transformers. The fabricated LNA chip shows a peak gain of 25 dB at 94 GHz and has a 3-dB bandwidth at 5.5 GHz. The chip consumes 46 mW of DC power from a 1.2-V supply, and the total chip area, including the pads, is $0.3mm^2$.

A study on the new oscillator using low noise amplilfier (저 잡음 증폭기를 이용한 새로운 발진기에 관한 연구)

  • 하성재;지칠영;이용덕;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7B
    • /
    • pp.880-883
    • /
    • 2001
  • 본 논문에서는 위상 잡음을 개선하기 위해서 Lesson의 위상 잡음 모델을 분석하여 이를 개선시키는 발진기의 구조를 제안하였다. 제안된 구조는 유전체 공진기를 사용한 대역통과 여파기, 평형 저 잡음 증폭기와 출력 전력을 격리시키기 위한 Branch-Line 전력 분배기로 구성되었다. 제안된 구조를 갖는 발진기는 12.653GHz에서 18.5dBm의 출력을 나타내었으며 위상잡음 특성은 중심주파수에서 10kHz 떨어진 곳에서 -82.6dBc/Hz를 나타내었다.

  • PDF

Studies on the High-gain Low Noise Amplifier for 60 GHz Wireless Local Area Network (60 GHz 무선 LAN의 응용을 위한 고이득 저잡음 증폭기에 관한 연구)

  • 조창식;안단;이성대;백태종;진진만;최석규;김삼동;이진구
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.21-27
    • /
    • 2004
  • In this paper, millimeter-wave monolithic integrated circuit(MIMIC) low noise amplifier(LNA) for V-band, which is applicable to 60 GHz wireless local area network(WLAN), was fabricated using the high performance 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate pseudomorphic high electron mobility transistor(PHEMT). The DC characteristics of PHEMT are drain saturation current density(Idss) of 450 mA/mm and maximum transconductance(gm, max) of 363.6 mS/mm. The RF characteristics were obtained the current gain cut-off frequency(fT) of 113 GHz and the maximum oscillation frequency(fmax) of 180 GHz. V-band MIMIC LNA was designed using active and passive device library, which is composed of 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate PHEMT and coplanar waveguide(CPW) technology. The designed V-band MIMIC LNA was fabricated using integrated unit processes of active and passive device. The measured results of V-band MIMIC LNA are shown S21 gain of 21.3 dB, S11 of -10.6 dB at 60 GHz and S22 of -29.7 dB at 62.5 GHz. The measured result of V-band MIMIC LNA was shown noise figure (NF) of 4.23 dB at 60 GHz.

A VHF/UHF-Band Variable Gain Low Noise Amplifier for Mobile TV Tuners (모바일 TV 튜너용 VHF대역 및 UHF 대역 가변 이득 저잡음 증폭기)

  • Nam, Ilku;Lee, Ockgoo;Kwon, Kuduck
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.90-95
    • /
    • 2014
  • This paper presents a VHF/UHF-band variable gain low noise amplifier for multi-standard mobile TV tuners. A proposed VHF-band variable gain amplifier is composed of a resistive shunt-feedback low noise amplifier to remove external matching components, a single-to-differential amplifier with input PMOS transcoductors to improve low frequency noise performance, a variable shunt-feedback resistor and an attenuator to control variable gain range. A proposed UHF-band variable gain amplifier consists of a narrowband low noise amplifier with capacitive tuning to improve noise performance and interference rejection performance, a single-to-differential with gm gain control and an attenuator to adjust gain control range. The proposed VHF-band and UHF-band variable gain amplifier were designed in a $0.18{\mu}m$ RF CMOS technology and draws 22 mA and 17 mA from a 1.8 V supply voltage, respectively. The designed VHF-band and UHF-band variable gain amplifier show a voltage gain of 27 dB and 27 dB, a noise figure of 1.6-1.7 dB and 1.3-1.7 dB, OIP3 of 13.5 dBm and 16 dBm, respectively.

Design of Bias Circuit for GHz BiCMOS Low Noise Amplifier (GHz BiCMOS 저 잡음 증폭기를 위한 바이어스 회로 설계)

  • Choi, Geun-Ho;Sung, Myeong-U;Rastegar, Habib;Kim, Shin-Gon;Kurbanov, Murod;Chandrasekar, Pushpa;Kil, Keun-Pil;Ryu, Jee-Youl;Noh, Seok-Ho;Yoon, Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.696-697
    • /
    • 2016
  • 본 논문은 5.25-GHz BiCMOS 저 잡음 증폭기를 위한 바이어스 회로를 제안한다. 이러한 회로는 1볼트 전원에서 동작하며, 저전압 및 저전력으로 동작하도록 설계되어 있다. 제안한 회로는 $0.18{\mu}m$ SiGe HBT BiCMOS로 설계하였다. 이러한 회로는 밴드 갭 참조회로 (band-gap reference circuit)를 사용하였다.

  • PDF

0.11μm CMOS Low Power Broadband LNA design for 3G/4G LTE Environment (3G, 4G LTE 환경에 적합한 0.11μm CMOS 저전력, 광대역의 저잡음증폭기 설계)

  • Song, Jae-Yeol;Lee, Kyung-Hoon;Park, Seong-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.1027-1034
    • /
    • 2014
  • We present the Low Power Broadband Low noise amplifier(LNA) that can be applied a whole bandwidth from 3G to 4G LTE. This multi input LNA was designed to steadily amplify through a multi input method regardless the size of the input signal and operate on a wide range of frequency band from a standard 3G CDMA band 1.2GHz to LTE band 2.5GHz. The designed LNA consumes an average of 6mA on a 1.2V power supply and this was affirmed using computer simulation tests. The amplification which was corresponded to the lowest input signal is at a maximum of 20dB and was able to obtain the minimum value of the gain of -10dB. The Noise figure is less than 3dB at a High-gain mode and is less than 15dB at a Low-gain mode.