• Title/Summary/Keyword: 재료 위상최적화

Search Result 36, Processing Time 0.019 seconds

Topology Optimization Using Equivalent Material Properties Prediction Techniques of Particulate-Reinforced Composites (입자보강 복합재료의 등가 재료상수 예측기법을 이용한 위상 최적설계)

  • 임오강;이진식
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.267-274
    • /
    • 1998
  • 본 연구에서는 기지개와 미시구멍으로 구성된 복합재료에 입자보강 복합재료의 등가 재료상수 예측기법인 평균장 근사이론과 등가원리를 적용하여 위상 최적화에 필요한 등가 재료상수와 설계변수와의 상관관계식을 유도하였다. 또한, 유도된 관계식에 중간값을 갖는 설계변수의 수를 줄이기 위하여 벌칙인자를 도입하였다. 그리고 본 연구의 타당성을 검증하기 위하여 벌칙인자가 도입된 위상 최적화문제를 순차이차계획법인 PLBA 알고리즘을 이용하여 해석하였다.

  • PDF

Material Topology Optimization Design of Structures using SIMP Approach Part II : Initial Design Domain with Topology of Partial Solids (SIMP를 이용한 구조물의 재료 위상 최적설계 Part II : 부분적인 솔리드 위상을 가지는 초기 설계영역)

  • Lee, Dong-Kyu;Park, Sung-Soo;Shin, Soo-Mi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • Discrete topology optimization processes of structures start from an initial design domain which is described by the topology of constant material densities. During optimization procedures, the structural topology changes in order to satisfy optimization problems in the fixed design domain, and finally, the optimization produces material density distributions with optimal topology. An introduction of initial holes in a design domain presented by Eschenauer et at. has been utilized in order to improve the optimization convergence of boundary-based shape optimization methods by generating finite changes of design variables. This means that an optimal topology depends on an initial topology with respect to topology optimization problems. In this study, it is investigated that various optimal topologies can be yielded under constraints of usable material, when partial solid phases are deposited in an initial design domain and thus initial topology is finitely changed. As a numerical application, structural topology optimization of a simple MBB-Beam is carried out, applying partial circular solid phases with varying sizes to an initial design domain.

Topology Optimization of General Plate Structures by Using Unsymmetric Layered Artificial Material Model (비대칭 층을 가지는 인공재료모델을 이용한 일반 평판구조물의 위상최적화)

  • Park, Gyeong-Im;Lee, Sang-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.5
    • /
    • pp.67-74
    • /
    • 2007
  • The unsymmetrically layered artificial material model is consistently introduced to find the optimum topologies of the plate structures. Reissner-Mindlin (RM) plate theory is adopted to formulate the present 9-node plate element considering the first-order shear deformation of the plates. In the topology optimization process, the strain energy to be minimized is employed as the objective function and the initial volume of structures is adopted as the constraint function. In addition, the resizing algorithm based on the optimality criteria is used to update the hole size introduced in the proposed artificial material model. Several numerical examples are rallied out to investigate the performance of the proposed technique. From numerical results, the proposed topology optimization techniques are found to be very effective to produce the optimum topology of plate structures. In particular, the proposed unsymmetric stiffening layer model make it possible to produce more realistic stiffener design of the plate structures.

  • PDF

Inverse Estimation Method for Spatial Randomness of Material Properties and Its Application to Topology Optimization on Shape of Geotechnical Structures (재료 물성치의 공간적 임의성에 대한 역추정 방법 및 지반구조 형상의 위상 최적화 적용)

  • Kim, Dae-Young;Song, Myung Kwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • In this paper, the spatial randomness and probability characteristics of material properties are inversely estimated by using a set of the stochastic fields for the material properties of geotechnical structures. By using the probability distribution and probability characteristics of these estimated material properties, topology optimization is performed on structure shape, and the results are compared with the existing deterministic topology optimization results. A set of stochastic fields for material properties is generated, and the spatial randomness of material properties in each field is simulated. The probability distribution and probability characteristics of actual material properties are estimated using the partial values of material properties in each stochastic field. The probability characteristics of the estimated actual material properties are compared with those of the stochastic field set. Also, response variability of the ground structure having a modulus of elasticity with randomness is compared with response variability of the ground structure having a modulus of elasticity without randomness. Therefore, the quantified stochastic topology optimization result can be obtained with considering the spatial randomness of actual material properties.

Topology Optimization Using the Chessboard Prevention Strategy (체스판무늬 형성 방지책을 이용한 위상 최적설계)

  • 임오강;이진식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.141-148
    • /
    • 1999
  • 변위 근거 유한요소해석을 사용하는 대부분의 위상 최적화 기법은 요소의 안정성 부족으로 인하여 체스판 무늬가 주기적 형태로 반복하여 설계영역 내부에 나타난다. 본 연구에서는 선형요소를 이용하면서 최적화 알고리즘의 안정성에 영향을 주지 않고 간단하게 모든 최적화 알고리즘에 이용 가능한 체스판무늬 형성 방지책을 개발하였다. 본 연구의 체스판무늬 형성 방치책에서는 먼저 각 선형요소를 구성하는 절점들의 부치분율을 설계변수로 선정하고, 요소내부의 부피분율을 설계변수로 표현하기 위한 선형 보간함수로 선형요소들의 형상함수를 선정하였다. 그리고, 설계변수와 등가 재료상수와의 상관 관계식은 평균장 근사이론을 이용하여 균질화된 재료에 벌칙인자가 도입된 관계식을 이용하였다. 또한, 본 연구에서는 순차이차계획법인 PLBA 알고리즘을 이용하여 위상 최적화문제를 해석하였다.

  • PDF

Material Topology Optimization Design of Structures using SIMP Approach Part I : Initial Design Domain with Topology of Partial Holes (SIMP를 이용한 구조물의 재료 위상 최적설계 Part I : 부분적인 구멍의 위상을 가지는 초기 설계영역)

  • Lee, Dong-Kyu;Park, Sung-Soo;Shin, Soo-Mi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • This study shows an implementation of partial holes in an initial design domain in order to improve convergences of topology optimization algorithms. The method is associated with a bubble method as introduced by Eschenauer et al. to overcome slow convergence of boundary-based shape optimization methods. However, contrary to the bubble method, initial holes are only implemented for initializations of optimization algorithm in this approach, and there is no need to consider a characteristic function which defines hole's deposition during every optimization procedure. In addition, solid and void regions within the initial design domain are not fixed but merged or split during optimization Procedures. Since this phenomenon activates finite changes of design parameters without numerically calculating movements and positions of holes, convergences of topology optimization algorithm can be improved. In the present study, material topology optimization designs of Michell-type beam utilizing the initial design domain with initial holes of varied sizes and shapes is carried out by using SIMP like a density distribution method. Numerical examples demonstrate the efficiency and simplicity of the present method.

Topology Optimization using S-shape material model (S 모양 가상재료를 이용한 위상최적화)

  • Yoon, G.H.;Kim, Y.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.345-350
    • /
    • 2000
  • In this paper, we introduce a new artificial material model for topology optimization. The present material model, named S-shape material model, accelerates topology optimization process especially in mathematical programming. We overcome the instability and the flatness in heuristic optimization process. Numerical examples show the superiority of the proposed material.

  • PDF

Using Topology Optimization, Light Weight Design of Vehicle Mounted Voltage Converter for Impact Loading (위상 최적화 기법을 이용한 충격하중에 대한 차량 탑재형 전력변환장치의 마운트 경량화 설계)

  • Ko, Dong-Shin;Lee, Hyun-Kyung;Hur, Deog-Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.353-358
    • /
    • 2018
  • In this study, it is describe to an optimization analysis process for the weight reduction of the voltage converter in the electric vehicle charging systems. The optimization design is a technique that finds the optimal material distribution under a given material quantity constraint by combining the design sensitivity with the material properties and the mathematical optimization. Among the topology optimization, a lightweight design is performed by a solid isotropic material with penalization with simple formula and well-convergence. The lightweight design consists of three steps. As a first step, a finite element model for the basic design of the on-board voltage converter was constructed and static analysis was performed on the load. In the second step, the optimum shape is obtained for the lightweight by performing the topology optimization using the solid isotropic material with penalization applying the stiffness coefficient of the isotropic material to the static analysis result. As a final step, impact analysis was performed by applying a half-sinusoidal pulse shape impact load which satisfies the impact test standard of the vehicle-mounted part with respect to the optimum shape. In the topology optimization, the design domain was defined as the mounting bracket area, and the design technology was finally achieved by optimizing the mounting bracket to achieve a weight reduction of 20% over the basic design.

Initial Shape Design of Space Truss Structure using Density Method (밀도법을 이용한 스페이스 트러스 구조물의 초기 형상 설계)

  • Kim, Ho-Soo;Park, Young-Sin;Yang, Myung-Kyu;Lee, Min-Ho;Kim, Jae-Yoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.59-66
    • /
    • 2010
  • This study presents the topology optimization technique by density method to determine the initial shape of space truss structures. Most initial shape design is performed by designer's previous experiences and trial and error method instead of the application of reasonable optimization method. Thus, the reasonable and economical optimization methods are needed to be introduced for the initial shape design. Therefore, we set design domain for cantilever space truss structure as an example model. And topology optimization is used to obtain optimum layout for them, and then size optimization method is used to find the optimum member size. Therefore, the reasonable initial optimal shapes of spatial truss structures can be obtained through the topology and size optimization using density method.

  • PDF

Topology Optimization based on Monte Carlo Analysis (몬테카를로 해석 기반 확률적 위상최적화)

  • Kim, Dae Young;Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.153-158
    • /
    • 2017
  • In this paper, we take into account topology optimization problems considering spatial randomness in the material property of elastic modulus. Based on 88 lines MATLAB Code, Monte Carlo analysis has been performed for MBB(messerschmidt-$b{\ddot{o}}lkow$-blohm) model using 5,000 random sample fields which are generated by using the spectral representation scheme. The random elastic modulus is assumed to be Gaussian in the spatial domain of the structure. The variability of the volume fraction of the material, which affects the optimum topology of the given problem, is given in terms of correlation distance of the random material. When the correlation distance is small, the randomness in the topology is high and vice versa. As the correlation distance increases, the variability of the volume fraction of the material decreases, which comply with the feature of the linear static analysis. As a consequence, it is suggested that the randomness in the material property is need to be considered in the topology optimization.