• Title/Summary/Keyword: 이산화탄소 함량

Search Result 286, Processing Time 0.053 seconds

CO2 decomposition characteristics of Ni-ferrite powder (Ni-페라이트 분말을 이용한 CO2 분해 특성)

  • Nam, Sung-Chan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5376-5383
    • /
    • 2011
  • The objective of this study is the development of carbon-recycle technology, that converts carbon dioxide captured from flue gas to carbon monoxide or carbon for reuse in industrial fields. It is difficult to decompose $CO_2$ because $CO_2$ is very stable molecule. And then metal oxide was used as an activation agent or catalyst for the decomposition of $CO_2$ at low temperature. Metal oxides, which converts $CO_2$ to CO or C, were prepared using Ni-ferrite by solid state method and hydrothermal synthesis in this study. TPR/TPO and TGA were used as an analysis method to analyze the decomposition characteristics of $CO_2$. As the results, the reduction area of $H_2$ was high value at 15 wt% of NiO and the decomposition area of $CO_2$ was superior capacity at 5 wt% of NiO. However, TGA data showed contrary results that reduction area of $H_2$ was 28.47wt% and oxidation area by $CO_2$ was 26.95wt% at 2.5 wt% of NiO, one of the Ni-ferrite powders synthesized using solid state method. $CO_2$ decomposition efficiency was 94.66% and it is excellent results in comparison with previous studies.

Effect of PVP on CO2/N2 Separation Performance of Self-crosslinkable P(GMA-g-PPG)-co-POEM) Membranes (자가가교형 P(GMA-g-PPG)-co-POEM) 분리막의 이산화탄소/질소 분리 성능에 대한 PVP의 영향)

  • Kim, Na Un;Park, Byeong Ju;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.113-120
    • /
    • 2018
  • Global warming due to indiscriminate carbon dioxide emissions has a profound impact on human life by causing abnormal climate change and ecosystem destruction. As a way to reduce carbon dioxide emissions, in this study, we presented a polymeric membrane prepared by blending a self-crosslinkable P(GMA-g-PPG)-co-POEM (SP) copolymer and commercial polymer polyvinylpyrrolidone (PVP). As the content of PVP increased, it was observed that the gas permeance decreased and $CO_2/N_2$ selectivity increased. At 30 wt% PVP content, the $CO_2$ permeance of the membrane decreased from 72.9 GPU of pure SP polymer to 12.6 GPU, while $CO_2/N_2$ selectivity improved by 79% from 28.1 to 50.4. It results from the hydrogen bonding between the SP copolymer and PVP, leading to more compact structure of the polymer chains, which was confirmed by FT-IR, TGA, XRD and SEM analysis. Therefore, we suggest that the permeance and selectivity of the membranes can be easily adjusted as desired by controlling the PVP content in the SP/PVP polymer blend.

Cellular Energy Allocation of a Marine Polychaete Species (Perinereis aibuhitensis) Exposed to Dissolving Carbon Dioxide in Seawater (해수 중 용존 이산화탄소 농도 증가가 두토막눈썹참갯지렁이(Perinereis aibuhitensis)의 세포내 에너지 할당에 미치는 영향)

  • Moon, Seong-Dae;Lee, Ji-Hye;Sung, Chan-Gyoung;Choi, Tae Seob;Lee, Kyu-Tae;Lee, Jung-Suk;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • An experiment was conducted to evaluate the biochemical adverse effect of increased carbon dioxide in seawater on marine polychaete, Perinereis aibuhitensis. We measured the available energy reserves, Ea (total carbohydrate, protein, and lipid content) and the energy consumption, Ec (electron transport activity) of Perinereis aibuhitensis exposed for 7-d to a range of $CO_2$ concentration such as 0.39 (control =390 ppmv), 3.03 (=3,030 ppmv), 10.3 (=10,300 ppmv), and 30.1 (=30,100 ppmv) $CO_2$ mM, respectively. The cellular energy allocation (CEA) methodology was used to assess the adverse effects of toxic stress on the energy budget of the test organisms. The results of a decrease in CEA effect of increased carbon dioxide in seawater from all individual in Ea and Ec. Increase of carbon dioxide reduced pH in seawater, significantly. The chemical changes in sea- water caused by increasing $pCO_2$ might cause stresses to test organisms and changes in the cellular energy allocations. Results of this study can be used to understand the possible influence of $CO_2$ concentration increased by the leakage from sub-sea bed storage sites as well as fossil fuel combustion on marine organisms.

The Study of KOGAS DME Process in Small and Medium Sized Gas Field Containing $CO_2$ ($CO_2$가 함유된 중소규모 가스전을 위한 KOGAS DME Process 연구)

  • Mo, Yong-Gi;Cho, Won-Jun;Song, Taek-Yong;Baek, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.51-55
    • /
    • 2010
  • The global activities to reduce the $CO_2$ emission as a greenhouse gas have been various efforts. Under this circumstance, small and medium sized gas field containing $CO_2$ to develop as LNG is not economic feasibility. Particularly, for the separation of $CO_2$ in gas field, separation facilities should be installed to add. This is and increase in plant construction cost and separated $CO_2$ emission into the atmosphere is not the result of greenhouse gas reduction. When the uneconomic gas field apply the KOGAS DME process, the gas field containing $CO_2$ can be increase economic feasibility because of natural gas and $CO_2$ can be use to resource gas. The Tri-reformer produced syngas as H2 and CO in KOGAS DME process and the resource gases are natural gas, steam, oxygen and $CO_2$. The $CO_2$ is used as raw material gases from recover $CO_2$ in DME process. In this study, we investigated range of application of $CO_2$ in gas field.

Optimization of Supercritical Fluid Extraction of Tocotrienol from Grape Seed (초임계유체 추출을 이용한 포도씨 tocotrienol 추출조건 최적화)

  • Kim, Kyeong-Mi;Woo, Koan Sik;Hwang, In-Guk;Lee, Youn-Ri;Lee, Jun-Soo;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.37-41
    • /
    • 2009
  • In this study, supercritical carbon dioxide extraction (SFE) was utilized for the extraction of tocotrienol from grape seeds. The optimal conditions for vitamin E and tocotrienol extraction were determined via response surface methodology (RSM). Central composite design was utilized to assess the effects of oven temperature (30-$50^{\circ}C$, X1), operating pressure (17-25 MPa, X2), and extraction time (1-5 hr, X3) of supercritical fluid extraction. Vitamin E and tocotrienol contents were 8.65 mg/100 g and 7.88 mg/100 g at $40^{\circ}C$, 20MPa and 5 hr, respectively. The predicted extraction condition was validated via actual experimentation. The predicted extraction conditions were $40^{\circ}C$, 3.8 hr, and 20.7MPa. The vitamin E and tocotrienol contents under these conditions were 8.20 mg/100 g and 7.42 mg/100 g, respectively. The vitamin E and tocotrienol contents of solvent extraction with hexane were 8.18 mg/100 g and 7.24 mg/100 g, respectively.

The Effect of Carbon Dioxide Leaked from Geological Storage Site on Soil Fertility: A Study on Artificial Leakage (지중 저장지로부터 누출된 이산화탄소가 토양 비옥도에 미치는 영향: 인위 누출 연구)

  • Baek, Seung Han;Lee, Sang-Woo;Lee, Woo-Chun;Yun, Seong-Taek;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.409-425
    • /
    • 2021
  • Carbon dioxide has been known to be a typical greenhouse gas causing global warming, and a number of efforts have been proposed to reduce its concentration in the atmosphere. Among them, carbon dioxide capture and storage (CCS) has been taken into great account to accomplish the target reduction of carbon dioxide. In order to commercialize the CCS, its safety should be secured. In particular, if the stored carbon dioxide is leaked in the arable land, serious problems could come up in terms of crop growth. This study was conducted to investigate the effect of carbon dioxide leaked from storage sites on soil fertility. The leakage of carbon dioxide was simulated using the facility of its artificial injection into soils in the laboratory. Several soil chemical properties, such as pH, cation exchange capacity, electrical conductivity, the concentrations of exchangeable cations, nitrogen (N) (total-N, nitrate-N, and ammonia-N), phosphorus (P) (total-P and available-P), sulfur (S) (total-S and available-S), available-boron (B), and the contents of soil organic matter, were monitored as indicators of soil fertility during the period of artificial injection of carbon dioxide. Two kinds of soils, such as non-cultivated and cultivated soils, were compared in the artificial injection tests, and the latter included maize- and soybean-cultivated soils. The non-cultivated soil (NCS) was sandy soil of 42.6% porosity, the maize-cultivated soil (MCS) and soybean-cultivated soil (SCS) were loamy sand having 46.8% and 48.0% of porosities, respectively. The artificial injection facility had six columns: one was for the control without carbon dioxide injection, and the other five columns were used for the injections tests. Total injection periods for NCS and MCS/SCS were 60 and 70 days, respectively, and artificial rainfall events were simulated using one pore volume after the 12-day injection for the NCS and the 14-day injection for the MCS/SCS. After each rainfall event, the soil fertility indicators were measured for soil and leachate solution, and they were compared before and after the injection of carbon dioxide. The results indicate that the residual concentrations of exchangeable cations, total-N, total-P, the content of soil organic matter, and electrical conductivity were not likely to be affected by the injection of carbon dioxide. However, the residual concentrations of nitrate-N, ammonia-N, available-P, available-S, and available-B tended to decrease after the carbon dioxide injection, indicating that soil fertility might be reduced. Meanwhile, soil pH did not seem to be influenced due to the buffering capacity of soils, but it is speculated that a long-term leakage of carbon dioxide might bring about soil acidification.

Mitigation of Carbon Dioxide and Heavy Metals by Urban Greenspace (도시녹지의 이산화탄소 및 중금속 저감)

  • Park, Joo-Young;Ju, Jin-Hee;Yoon, Yong-Han
    • Journal of Environmental Policy
    • /
    • v.9 no.1
    • /
    • pp.137-154
    • /
    • 2010
  • These objectives of this study were to compute heavy metal and accumulation carbon dioxide fixing quantity from urban green space(street trees and urban parks) in Cheong-ju city and Chungju-city and thus to estimate the effect of urban green space for improving the urban environment. The results are summarized below. 1. Results of the total accumulation of the carbon dioxide fixing quantity of street trees, Cheong-ju city and Chungju-city street tree was 1, 230,000kg-C, 1,270,000 kg-C, respectively. Total accumulation carbon dioxide fixing quantity of Balssan urban park had a 25,000kg-C in Cheong-ju city, Degami sports park had a 6,400kg-C in Chungju-city. 2. Results of heavy metal for street trees, fell in the order Zn > Cu > Cr > Ni >, the highest accumulated heavy metal was Zn, and the lowest was Ni. Total heavy metal concentration according to land-use area, was observed in order, for residental areas(157.26 mg/kg) > industrial areas(141.71 mg/kg) > commercial areas(118.55 mg/kg) > and greenspace areas(61.95 mg/kg) in Cheong-ju city. 3. Total heavy metal concentration for street trees fell in the order of commercial areas(84.48 mg/kg) > residental areas(83.70 mg/kg) > and greenspace(48.23 mg/kg) according to land-use area in Chungju-city. Comparatively, Cheong-ju city had more total heavy metal concentration than Chungju-city. 4. Heavy metal for soil that planted street trees was observed in order of Zn > Cu > Pb( > Ni > Cr > As > Cd), and Zn was highest, and Cd was lowest. Total heavy metal concentration for soil fell in the order commercial area(91.82mg/kg) > industrial area(85.96mg/kg) > residental area(67.55mg/kg) > greenspace(43.13mg/kg) according to land-use area in Cheong-ju city. 5. Heavy metal for soil that planted street trees was observed in order of Zn > Pb > Cu( > Ni > Cr > As > Cd, and Zn was highest. Total heavy metal concentration for soil fell in the order commercial area(87.66mg/kg) > greenspace(72.73mg/kg) $${\geq_-}$$ residental area(70.10mg/kg) in Chungju-city.

  • PDF

Preparation of Asymmetric PES Hollow Fiber Gas Separation Membranes and Their $CO_2/CH_4$ Separation Properties (비대칭구조의 폴리이서설폰 기체분리용 중공사막의 제조 및 이를 이용한 $CO_2/CH_4$ 분리특성)

  • Park, Sung-Ryul;Ahn, Hyo-Seong;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • Huge amount of $CH_4$ mixtures has been emitted from landfills and organic wastes via anaerobic digestion. The recovery of high purity $CH_4$ from these gases has two merits: reduction of green house gases and production of renewable fuels. Membrane technology based on polymeric materials can be used in this application. In this study, asymmetric gas separation hollow fiber membranes were fabricated to develop the membrane-based bio-gas purification process. Polyethersulfone (PES) was chosen as a polymer materials because of high $CO_2$ permeability of 3.4 barrer and $CO_2/CH_4$ selectivity of 50[1]. Acetone was used as a non-solvent additive because of its unique swelling power for PES and highly volatile character. The prepared PES hollow fiber showed excellent separation properties: 36 GPU of $CO_2$ permeance and 46 of $CO_2/CH_4$ selectivity at optimized preparation conditions: 9wt% acetone content, 10cm air-gap and 4wt% PDMS coating processes. With the PES hollow fiber membranes developed, mixed $CO_2/CH_4$ test was done by changing various operating conditions such as pressures and feed compositions to meet the highest recovery of CH4 with 95% purity. High $CH_4$ recovery of 58 wt% was observed at 10 atm feed pressure for the 50 vol% of $CO_2$ in $CO_2/CH_4$ mixture.

Preparation of Regenerated Cellulose Fiber from the Cellulose Carbonate Derivative(III) -Phase Diagram of Cellulose Carbonate Derivative- (셀룰로오스 카보네이트 유도체로부터 재생 셀룰로오스 섬유 제조(III) -셀룰로오스 카보네이트 유도체의 상그림표-)

  • 오상연;류동일;신윤숙;이화섭;조성무
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.215-218
    • /
    • 2001
  • 이산화탄소($CO_2$)를 사용한 셀룰로오스 카보네이트 유도체의 제조 및 재생 셀룰로오스 섬유 제조와 관련한 기초 연구성과를 이미 발표한 바 있다[1~3]. 이번 연구에서는 일정한 조건에서 제조된 셀룰로오스 카보네이트 유도체의 용해온도, 셀룰로오스 카보네이트 함량, 10% 수산화나트륨 수용액내의 산화아연의 함량 변화에 따른 용해성을 평가하여 상그림표를 작성하였다. (중략)

  • PDF

Fabrication of Polymeric Blend Membranes Using PBEM-POEM Comb Copolymer and Poly(ethylene glycol) for CO2 Capture (PBEM-POEM 공중합체와 Poly(ethylene glycol)의 폴리머 블렌드를 이용한 이산화탄소 분리막 제조)

  • Moon, Seung Jae;Min, Hyo Jun;Kim, Na Un;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.4
    • /
    • pp.223-230
    • /
    • 2019
  • In this paper, we develop a polymeric blend membrane based on $CO_2$-philic poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate)-poly(oxyethylene methacrylate) (PBEM-POEM) comb copolymer, which was synthesized by facile free radical polymerization. The PBEM-POEM (PBE) comb copolymer was blended with a commercial oligomer, low-molecular-weight poly(ethylene glycol) (PEG, $M_w=200gmol^{-1}$) with various ratios to prepare $CO_2/N_2$ separation membranes. From the result of $CO_2/N_2$ separation test of the PBE/PEG blend membranes with the various PEG contents, we could conclude that with increasing PEG content, the $CO_2/N_2$ selectivity significantly increased while the CO2 permeability decreased showing trade-off relationship. However, when comparing the performance of the PBE/PEG (9 : 1) with the PBE/PEG (7 : 3) membrane, the $CO_2$ permeance decreased by only 8.3%, while the $N_2$ permeance decreased by 69.1%. Therefore, the $CO_2/N_2$ selectivity dramatically increased from 33.8 to 100.3. This could be because the POEM chains, which account for 80% of the PBE copolymer, favorably interact with PEG and lead to a more compact chain structure, which was confirmed by FT-IR, XRD and SEM analysis. The PBE/PEG (7 : 3) blend membrane had the most optimal gas separation performance, showing a $CO_2$ permeance of 170.5 GPU and $CO_2/N_2$ selectivity of 100.3.