Preparation of Asymmetric PES Hollow Fiber Gas Separation Membranes and Their $CO_2/CH_4$ Separation Properties

비대칭구조의 폴리이서설폰 기체분리용 중공사막의 제조 및 이를 이용한 $CO_2/CH_4$ 분리특성

  • Park, Sung-Ryul (Environment and Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Ahn, Hyo-Seong (Environment and Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jeong-Hoon (Environment and Resources Research Center, Korea Research Institute of Chemical Technology)
  • 박성률 (한국화학연구원 그린화학연구단 환경자원연구센터) ;
  • 안효성 (한국화학연구원 그린화학연구단 환경자원연구센터) ;
  • 김정훈 (한국화학연구원 그린화학연구단 환경자원연구센터)
  • Received : 2011.12.03
  • Accepted : 2011.12.28
  • Published : 2011.12.20

Abstract

Huge amount of $CH_4$ mixtures has been emitted from landfills and organic wastes via anaerobic digestion. The recovery of high purity $CH_4$ from these gases has two merits: reduction of green house gases and production of renewable fuels. Membrane technology based on polymeric materials can be used in this application. In this study, asymmetric gas separation hollow fiber membranes were fabricated to develop the membrane-based bio-gas purification process. Polyethersulfone (PES) was chosen as a polymer materials because of high $CO_2$ permeability of 3.4 barrer and $CO_2/CH_4$ selectivity of 50[1]. Acetone was used as a non-solvent additive because of its unique swelling power for PES and highly volatile character. The prepared PES hollow fiber showed excellent separation properties: 36 GPU of $CO_2$ permeance and 46 of $CO_2/CH_4$ selectivity at optimized preparation conditions: 9wt% acetone content, 10cm air-gap and 4wt% PDMS coating processes. With the PES hollow fiber membranes developed, mixed $CO_2/CH_4$ test was done by changing various operating conditions such as pressures and feed compositions to meet the highest recovery of CH4 with 95% purity. High $CH_4$ recovery of 58 wt% was observed at 10 atm feed pressure for the 50 vol% of $CO_2$ in $CO_2/CH_4$ mixture.

매립지나 유기성폐기물의 혐기성소화에서 발생되는 바이오 메탄가스 혼합물에서 이산화탄소를 제거하고 고농도의 메탄을 연료로 정제하는 기술은 온실가스의 저감과 신재생에너지 개발의 두 가지 장점을 함께 가지고 있다. 고분자 소재를 이용한 분리막기술은 메탄의 분리에 경제적으로 적용될 수 있는 기술이다. 본 연구에서는 이산화탄소/메탄의 선택도가 50, 이산화탄소의 투과도가 3.4 barrer로 알려진 폴리이서설폰[1]을 고분자 소재로 사용하고, 비용매 첨가제로 폴리이서설폰을 잘 팽윤시키는 아세톤의 함량을 달리하여 비대칭 중공사막을 제조하였다. 아세톤의 함량 9 wt%, 방사높이 10 cm, 4 wt% PDMS 코팅을 거친 폴리이서설폰 중공사막은 이산화탄소 투과도 36 GPU 및 이산화탄소/메탄 선택도 46의 우수한 성능을 나타내었다. 최적조건의 비대칭 폴리이서설폰 중공사막을 이용하여 제조된 모듈의 이산화탄소/메탄 순수가스 및 혼합가스 투과특성을 압력, 유입조성의 변화에 따라 관찰하여 분리막 공정을 구성한 결과 10 atm의 압력조건에서 95%의 메탄을 58%의 회수율로 얻을 수 있는 것으로 나타났다.

Keywords

References

  1. M. Mulder, "Basic principal of membrane technology", 2nd edition, pp. 313-321, Kluwer Academic Publishers, The Netherlands (2003).
  2. Davis Guggenheim, "An inconvenient truth", Documentary film, Lawrence Bender Productions, U.S.A. (2006).
  3. Korea Energy Management Corporation, "Review of global technology for climate change", Seminar for greenhouse gas reduction, February 14, Daejeon, Korea (2007).
  4. U. S. Environmental Protection Agency, "Global Anthropogenic Emissions of Non-$CO_2$ Greenhouse Gases 1990-2020", Office of atmospheric programs climate change division, U.S.A. (2006).
  5. S. Cavenati, C. A. Grande, and A. E. Rodrigues, "Upgrade of Methane from Landfill Gas by Pressure Swing Adsorption", Energy & Fuels, 19, 2545 (1993).
  6. M. Yang and T. Kerr, "International Methane Partnership Fighting Climate Change", International Energy Agency, France (2007).
  7. Ministry of Environment, "Master plan on action for climate change", (2008).
  8. R. E. Buxbaum and T. L. Marker, "Hydrogen transport through non-porous membranes of palladium- coated niobium, tantalum and vanadium", J. Membr. Sci., 85, 29 (1993). https://doi.org/10.1016/0376-7388(93)85004-G
  9. G. Kastros, T Stergiopoulos, I. M. Arabatiz, G. K. Papadokostaki, and P. Falaras, "A solvent-free polymer/ inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar sells", J. Photochemical Photobiology, 149, 191 (2002). https://doi.org/10.1016/S1010-6030(02)00027-8
  10. J. M. Carrasco, J. T. Bialasiewicz, R. C. P. Guisado, and J. I. León, "Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey", IEEE Transactions on Industrial Electronics, 53, 1002 (2006).
  11. J. P. Ciferno, T. E. Fout, A. P. Jones, and J. T. Murphy, "Capturing carbon from existing coalfired power plant", Chem. Eng. Prog., April, 33 (2009).
  12. E. Drioli and M. Romano, "Progress and new perspectives on integrated membrane operations for sustainable industrial growth", Ind. Eng. Chem. Res., 40, 1277 (2001). https://doi.org/10.1021/ie0006209
  13. M. Simmonds, P. Hurst, M. B. Wilkinson, C. Watt, and C. A. Roberts, "A study of very large scale post combustion $CO_2$ capture at a refining & petrochemical complex", 6th International Conference on Green house Gas control Technology, October 1, Kyoto, Japan (2002).
  14. M. J. Tuinier, M. van Sint Annaland, G. J. Kramer, and J. A. M. Kuipers, "Cryogenic $CO_2$ capture using dynamically operated packed beds", Chem. Eng. Sci., 65, 114 (2010). https://doi.org/10.1016/j.ces.2009.01.055
  15. L. I. Eide, M. Anheden, A. Lyngfelt, C. Abanades, M. Younes, D. Clodic, A. A. Bill, P. H. M. Feron, A. Rojey, and F. Giroudiere, "Novel capture processes", Oil & Gas Science & Technology, 60, 497 (2005). https://doi.org/10.2516/ogst:2005031
  16. S. Alexander Stern, "Polymers for gas separations: the next decade", J. Membr. Sci., 94, 1 (1994). https://doi.org/10.1016/0376-7388(94)00141-3
  17. J. Hao and P. A. Rice, "Upgrading low-quality natural gas with $H_{2}O$- and $CO_{2}$-selective polymer membranes: Part II. Process design, economics, and sensitivity study of membrane stages with recycle streams", J. Membr. Sci., 320, 108 (2008).
  18. A. F. Ismail and N. Yaacob, "Performance of treated and untreated asymmetric polysulfone hollow fiber membrane in series and cascade module configurations for $CO_{2}/CH_{4}$ gas separation system", J. Membr. Sci., 275, 151 (2006). https://doi.org/10.1016/j.memsci.2005.09.014
  19. Y. Li, C. Cao, T. S. Chung, and K. P. Pramoda, "Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation", J. Membr. Sci., 245, 53 (2004). https://doi.org/10.1016/j.memsci.2004.08.002
  20. M. Mulder, "Basic Principles of Membrane Technology", 1st edition, pp. 138-147, Kluwer Academic Publishers, The Netherlands (1996).
  21. D.-H. Kim, Y.-M. An, H.-D. Jo, J.-S. Park, and H.-K. Lee, "Studies on the N2/SF6 permeation behaviors using the polyethersulfone hollow fiber membranes", Membrane Journal, 19, 244 (2009).