References
-
N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C. S. Adjiman, C. K. Williams, N. Shah, and P. Fennell, "An overview of
$CO_2$ capture technologies", Energy Environ. Sci., 3, 1645 (2010). https://doi.org/10.1039/c004106h -
M. Oschatz and M. Antonietti, "A search for selectivity to enable
$CO_2$ capture with porous adsorbents", Energy Environ. Sci., 11, 57 (2018). https://doi.org/10.1039/C7EE02110K - D. M. D'Alessandro, B. Smit, and J. R. Long, "Carbon dioxide capture: Prospects for new materials", Angew. Chem. Int. Ed., 49, 6058 (2010). https://doi.org/10.1002/anie.201000431
-
M. Binns, S.-Y. Oh, D.-H. Kwak, and J.-K. Kim, "Analysis of hybrid membrane and chemical absorption systems for
$CO_2$ capture", Korean J. Chem. Eng., 32, 383 (2015). https://doi.org/10.1007/s11814-014-0188-y -
C. Song, Q. Liu, N. Ji, S. Deng, J. Zhao, Y. Li, Y. Song, and H. Li, "Alternative pathways for efficient
$CO_2$ capture by hybrid processes-A review", Renew. Sust. Energ. Rev., 82, 215 (2018). https://doi.org/10.1016/j.rser.2017.09.040 -
C. E. Powell and G. G. Qiao, "Polymeric
$CO_2/N_2$ gas separation membranes for the capture of carbon dioxide from power plant flue gases", J. Membr. Sci., 279, 1 (2006). https://doi.org/10.1016/j.memsci.2005.12.062 -
P. Luis and B. Bruggen, "The role of membranes in post-combustion
$CO_2$ capture", Greenh. Gases, 3, 318 (2013). https://doi.org/10.1002/ghg.1365 -
K. W. Ki and S. W. Kang, "1-Butyl-3-methylimidazolium tetrafluoroborate/
$Al_2O_3$ composite membrane for$CO_2$ separation", Membr. J., 27, 226 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.226 -
M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Pérez, and M. S. Rana, "Recent progress of fillers in mixed matrix membranes for
$CO_2$ separation: A review", Sep. Purif. Technol., 188, 431 (2017). https://doi.org/10.1016/j.seppur.2017.07.051 - L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
- L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
-
S. Zulfiqar, M. I. Sarwar, and D. Mecerreyes, "Polymeric ionic liquids for
$CO_2$ capture and separation: potential, progress and challenges", Polym. Chem., 6, 6435 (2015). https://doi.org/10.1039/C5PY00842E - S. S. Swain, L. Unnikrishnan, S. Mohanty, and S. K. Nayak, "Effect of nanofillers on selectivity of high performance mixed matrix membranes for separating gas mixtures", Korean J. Chem. Eng., 34, 2119 (2017). https://doi.org/10.1007/s11814-017-0128-8
-
P. Guan, J. Luo, W. Li, and Z. Si, "Enhancement of gas permeability for
$CH_4/N_2$ separation membranes by blending SBS to Pebax polymers", Macromol. Res., 25, 1007 (2017). https://doi.org/10.1007/s13233-017-5130-9 -
Y. Choi and S. W. Kang, "Effect of 4-hydroxybenzoic acid on
$CO_2$ separation performance of poly(ethylene oxide) membrane", Macromol. Res., 24, 1111 (2016). https://doi.org/10.1007/s13233-016-4154-x -
C. H. Park, J. P. Jung, J. H. Lee, and J. H. Kim, "Enhancement of
$CO_2$ permeance by incorporating$CaCO_3$ in Mixed Matrix Membranes", Membr. J., 28, 55 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.55 -
X. Zhu, C. Tian, C. L. Do-Thanh, and S. Dai, "Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based
$CO_2$ separation", ChemSusChem, 10, 3304 (2017). https://doi.org/10.1002/cssc.201700801 -
G. Guerrero, M.-B. Hägg, G. Kignelman, C. Simon, T. Peters, N. Rival, and C. Denonville, "Investigation of amino and amidino functionalized polyhedral oligomeric silSesquioxanes (POSS(R)) nanoparticles in PVA-based hybrid membranes for
$CO_2/N_2$ separation", J. Membr. Sci., 544, 161 (2017). https://doi.org/10.1016/j.memsci.2017.09.014 - S. H. Yeon, S. H. Ahn, J. H. Kim, K. B. Lee, Y. Jeong, and S. U. Hong, "Synthesis and gas permeation properties of poly(vinyl chloride)-graft-poly(vinyl pyrrolidone) membranes", Polym. Adv. Technol., 23, 516 (2012). https://doi.org/10.1002/pat.1907
- J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, "Complexation mechanism of olefin with silver ions dissolved in a polymer matrix and its effect on facilitated olefin transport", Chem.-Eur. J., 8, 650 (2002). https://doi.org/10.1002/1521-3765(20020201)8:3<650::AID-CHEM650>3.0.CO;2-X
- S. W. Kang, J. Hong, J. H. Park, S. H. Mun, J. H. Kim, J. Cho, K. Char, and Y. S. Kang, "Nanocomposite membranes containing positively polarized gold nanoparticles for facilitated olefin transport", J. Membr. Sci., 321, 90 (2008). https://doi.org/10.1016/j.memsci.2008.04.047
-
S. Jeong and S. W. Kang, "Effect of
$Ag_2O$ nanoparticles on long-term stable polymer/$AgBF_4/Al(NO_3)_3$ complex membranes for olefin/paraffin separation", Chem. Eng. J., 327, 500 (2017). https://doi.org/10.1016/j.cej.2017.06.117 - H. Basri, A. F. Ismail, and M. Aziz, "Polyethersulfone (PES)-silver composite UF membrane: Effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity", Desalination, 273, 72 (2011). https://doi.org/10.1016/j.desal.2010.11.010
-
N. U. Kim, B. J. Park, Y. Choi, K. B. Lee, and J. H. Kim, "High-performance self-cross-linked PGP-POEM comb copolymer membranes for
$CO_2$ capture", Macromolecules, 50, 8938 (2017). https://doi.org/10.1021/acs.macromol.7b02024 -
C. H. Park, J. H. Lee, J. P. Jung, B. Jung, and J. H. Kim, "A highly selective PEGBEM-g-POEM comb copolymer membrane for
$CO_2/N_2$ separation", J. Membr. Sci., 492, 452 (2015). https://doi.org/10.1016/j.memsci.2015.06.023 -
J. H. Lee, C. H. Park, J. P. Jung, J.-H. Kim, and J. H. Kim, "Dual-phase all-polymeric membranes with graft copolymer filler for
$CO_2$ capture", Chem. Eng. J., 334, 939 (2018). https://doi.org/10.1016/j.cej.2017.10.109 -
S. Luo, K. A. Stevens, J. S. Park, J. D. Moon, Q. Liu, B. D. Freeman, and R. Guo, "Highly
$CO_2$ -selective gas separation membranes based on segmented copolymers of poly(Ethylene oxide) reinforced with pentiptycene-containing polyimide hard segments", ACS Appl. Mater. Interfaces, 8, 2306 (2016). https://doi.org/10.1021/acsami.5b11355 - N. Sahiner, N. Pekel, and O. Guven, "Radiation synthesis, characterization and amidoximation of N-vinyl-2-pyrrolidone/acrylonitrile interpenetrating polymer networks", React. Funct. Polym., 39, 139 (1999). https://doi.org/10.1016/S1381-5148(97)00150-8
- H. Wu, X. Fang, X. Zhang, Z. Jiang, B. Li, and X. Ma, "Cellulose acetate-poly(N-vinyl-2-pyrrolidone) blend membrane for pervaporation separation of methanol/MTBE mixtures", Sep. Purif. Technol., 64, 183 (2008). https://doi.org/10.1016/j.seppur.2008.09.013
- W. N. W. Salleh and A. F. Ismail, "Carbon hollow fiber membranes derived from PEI/PVP for gas separation", Sep. Purif. Technol., 80, 541 (2011). https://doi.org/10.1016/j.seppur.2011.06.009
- A. A. Baqer, K. A. Matori, N. M. Al-Hada, A. H. Shaari, E. Saion, and J. L. Y. Chyi, "Effect of polyvinylpyrrolidone on cerium oxide nanoparticle characteristics prepared by a facile heat treatment technique", Results Phys., 7, 611 (2017). https://doi.org/10.1016/j.rinp.2017.01.020
-
J. P. Jung, C. H. Park, J. H. Lee, Y.-S. Bae, and J. H. Kim, "Room-temperature, one-pot process for
$CO_2$ capture membranes based on PEMA-g-PPG graft copolymer", Chem. Eng. J., 313, 1615 (2017). https://doi.org/10.1016/j.cej.2016.11.031 - S. Choi, J. H. Kim, and Y. S. Kang, "Wide-angle X-ray scattering studies on the structural properties of polymer electrolytes containing silver ions", Macromolecules, 34, 9087 (2001). https://doi.org/10.1021/ma010927z
- G. R. Mitchell and A. H. Windle, "Structure of polystyrene glasses", Polymer, 25, 906 (1984). https://doi.org/10.1016/0032-3861(84)90073-9
- B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999). https://doi.org/10.1021/ma9814548