DOI QR코드

DOI QR Code

Effect of PVP on CO2/N2 Separation Performance of Self-crosslinkable P(GMA-g-PPG)-co-POEM) Membranes

자가가교형 P(GMA-g-PPG)-co-POEM) 분리막의 이산화탄소/질소 분리 성능에 대한 PVP의 영향

  • Kim, Na Un (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Byeong Ju (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김나운 (연세대학교 화공생명공학과) ;
  • 박병주 (연세대학교 화공생명공학과) ;
  • 박민수 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2018.04.17
  • Accepted : 2018.04.26
  • Published : 2018.04.30

Abstract

Global warming due to indiscriminate carbon dioxide emissions has a profound impact on human life by causing abnormal climate change and ecosystem destruction. As a way to reduce carbon dioxide emissions, in this study, we presented a polymeric membrane prepared by blending a self-crosslinkable P(GMA-g-PPG)-co-POEM (SP) copolymer and commercial polymer polyvinylpyrrolidone (PVP). As the content of PVP increased, it was observed that the gas permeance decreased and $CO_2/N_2$ selectivity increased. At 30 wt% PVP content, the $CO_2$ permeance of the membrane decreased from 72.9 GPU of pure SP polymer to 12.6 GPU, while $CO_2/N_2$ selectivity improved by 79% from 28.1 to 50.4. It results from the hydrogen bonding between the SP copolymer and PVP, leading to more compact structure of the polymer chains, which was confirmed by FT-IR, TGA, XRD and SEM analysis. Therefore, we suggest that the permeance and selectivity of the membranes can be easily adjusted as desired by controlling the PVP content in the SP/PVP polymer blend.

무분별한 이산화탄소 배출로 인한 지구온난화는 이상기후와 생태계 파괴 등을 초래함으로써 인간의 삶에 심각한 영향을 미치고 있다. 이러한 문제의 근본 원인인 이산화탄소 배출을 저감하는 방법으로 본 연구에서는 자가-가교 성질이 있는 P(GMA-g-PPG)-co-POEM) (SP) 공중합체와 상용 고분자인 polyvinylpyrrolidone (PVP)를 혼합하여 블렌드 고분자 분리막을 제조하는 방법을 제시하였다. PVP 함량에 따른 분리막의 이산화탄소/질소 투과 특성을 확인하였으며, PVP의 함량이 증가할수록 투과도는 감소하고 선택도는 증가하는 결과를 보였다. 특히 PVP 함량이 30 wt%인 경우, 투과도는 순수 SP 고분자의 $CO_2$ 투과도인 72.9 GPU에서 12.6 GPU로 감소하였으나, $CO_2/N_2$ 선택도는 28.1에서 50.4로 약 79% 증가하였다. 이는 SP 공중합체와 PVP 사이의 수소결합으로 인해 고분자 사슬이 더욱 조밀하게 배열되기 때문인 것으로 볼 수 있으며, 이를 FT-IR, TGA, XRD, SEM을 통해 분석하였다. 따라서, 본 연구에서는 SP/PVP 고분자 블렌드 내 PVP의 함량을 조절함으로써 분리막의 투과도 및 선택도를 손쉽게 조절할 수 있음을 확인하였다.

Keywords

References

  1. N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C. S. Adjiman, C. K. Williams, N. Shah, and P. Fennell, "An overview of $CO_2$ capture technologies", Energy Environ. Sci., 3, 1645 (2010). https://doi.org/10.1039/c004106h
  2. M. Oschatz and M. Antonietti, "A search for selectivity to enable $CO_2$ capture with porous adsorbents", Energy Environ. Sci., 11, 57 (2018). https://doi.org/10.1039/C7EE02110K
  3. D. M. D'Alessandro, B. Smit, and J. R. Long, "Carbon dioxide capture: Prospects for new materials", Angew. Chem. Int. Ed., 49, 6058 (2010). https://doi.org/10.1002/anie.201000431
  4. M. Binns, S.-Y. Oh, D.-H. Kwak, and J.-K. Kim, "Analysis of hybrid membrane and chemical absorption systems for $CO_2$ capture", Korean J. Chem. Eng., 32, 383 (2015). https://doi.org/10.1007/s11814-014-0188-y
  5. C. Song, Q. Liu, N. Ji, S. Deng, J. Zhao, Y. Li, Y. Song, and H. Li, "Alternative pathways for efficient $CO_2$ capture by hybrid processes-A review", Renew. Sust. Energ. Rev., 82, 215 (2018). https://doi.org/10.1016/j.rser.2017.09.040
  6. C. E. Powell and G. G. Qiao, "Polymeric $CO_2/N_2$ gas separation membranes for the capture of carbon dioxide from power plant flue gases", J. Membr. Sci., 279, 1 (2006). https://doi.org/10.1016/j.memsci.2005.12.062
  7. P. Luis and B. Bruggen, "The role of membranes in post-combustion $CO_2$ capture", Greenh. Gases, 3, 318 (2013). https://doi.org/10.1002/ghg.1365
  8. K. W. Ki and S. W. Kang, "1-Butyl-3-methylimidazolium tetrafluoroborate/$Al_2O_3$ composite membrane for $CO_2$ separation", Membr. J., 27, 226 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.226
  9. M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Pérez, and M. S. Rana, "Recent progress of fillers in mixed matrix membranes for $CO_2$ separation: A review", Sep. Purif. Technol., 188, 431 (2017). https://doi.org/10.1016/j.seppur.2017.07.051
  10. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  11. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  12. S. Zulfiqar, M. I. Sarwar, and D. Mecerreyes, "Polymeric ionic liquids for $CO_2$ capture and separation: potential, progress and challenges", Polym. Chem., 6, 6435 (2015). https://doi.org/10.1039/C5PY00842E
  13. S. S. Swain, L. Unnikrishnan, S. Mohanty, and S. K. Nayak, "Effect of nanofillers on selectivity of high performance mixed matrix membranes for separating gas mixtures", Korean J. Chem. Eng., 34, 2119 (2017). https://doi.org/10.1007/s11814-017-0128-8
  14. P. Guan, J. Luo, W. Li, and Z. Si, "Enhancement of gas permeability for $CH_4/N_2$ separation membranes by blending SBS to Pebax polymers", Macromol. Res., 25, 1007 (2017). https://doi.org/10.1007/s13233-017-5130-9
  15. Y. Choi and S. W. Kang, "Effect of 4-hydroxybenzoic acid on $CO_2$ separation performance of poly(ethylene oxide) membrane", Macromol. Res., 24, 1111 (2016). https://doi.org/10.1007/s13233-016-4154-x
  16. C. H. Park, J. P. Jung, J. H. Lee, and J. H. Kim, "Enhancement of $CO_2$ permeance by incorporating $CaCO_3$ in Mixed Matrix Membranes", Membr. J., 28, 55 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.55
  17. X. Zhu, C. Tian, C. L. Do-Thanh, and S. Dai, "Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based $CO_2$ separation", ChemSusChem, 10, 3304 (2017). https://doi.org/10.1002/cssc.201700801
  18. G. Guerrero, M.-B. Hägg, G. Kignelman, C. Simon, T. Peters, N. Rival, and C. Denonville, "Investigation of amino and amidino functionalized polyhedral oligomeric silSesquioxanes (POSS(R)) nanoparticles in PVA-based hybrid membranes for $CO_2/N_2$ separation", J. Membr. Sci., 544, 161 (2017). https://doi.org/10.1016/j.memsci.2017.09.014
  19. S. H. Yeon, S. H. Ahn, J. H. Kim, K. B. Lee, Y. Jeong, and S. U. Hong, "Synthesis and gas permeation properties of poly(vinyl chloride)-graft-poly(vinyl pyrrolidone) membranes", Polym. Adv. Technol., 23, 516 (2012). https://doi.org/10.1002/pat.1907
  20. J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, "Complexation mechanism of olefin with silver ions dissolved in a polymer matrix and its effect on facilitated olefin transport", Chem.-Eur. J., 8, 650 (2002). https://doi.org/10.1002/1521-3765(20020201)8:3<650::AID-CHEM650>3.0.CO;2-X
  21. S. W. Kang, J. Hong, J. H. Park, S. H. Mun, J. H. Kim, J. Cho, K. Char, and Y. S. Kang, "Nanocomposite membranes containing positively polarized gold nanoparticles for facilitated olefin transport", J. Membr. Sci., 321, 90 (2008). https://doi.org/10.1016/j.memsci.2008.04.047
  22. S. Jeong and S. W. Kang, "Effect of $Ag_2O$ nanoparticles on long-term stable polymer/$AgBF_4/Al(NO_3)_3$ complex membranes for olefin/paraffin separation", Chem. Eng. J., 327, 500 (2017). https://doi.org/10.1016/j.cej.2017.06.117
  23. H. Basri, A. F. Ismail, and M. Aziz, "Polyethersulfone (PES)-silver composite UF membrane: Effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity", Desalination, 273, 72 (2011). https://doi.org/10.1016/j.desal.2010.11.010
  24. N. U. Kim, B. J. Park, Y. Choi, K. B. Lee, and J. H. Kim, "High-performance self-cross-linked PGP-POEM comb copolymer membranes for $CO_2$ capture", Macromolecules, 50, 8938 (2017). https://doi.org/10.1021/acs.macromol.7b02024
  25. C. H. Park, J. H. Lee, J. P. Jung, B. Jung, and J. H. Kim, "A highly selective PEGBEM-g-POEM comb copolymer membrane for $CO_2/N_2$ separation", J. Membr. Sci., 492, 452 (2015). https://doi.org/10.1016/j.memsci.2015.06.023
  26. J. H. Lee, C. H. Park, J. P. Jung, J.-H. Kim, and J. H. Kim, "Dual-phase all-polymeric membranes with graft copolymer filler for $CO_2$ capture", Chem. Eng. J., 334, 939 (2018). https://doi.org/10.1016/j.cej.2017.10.109
  27. S. Luo, K. A. Stevens, J. S. Park, J. D. Moon, Q. Liu, B. D. Freeman, and R. Guo, "Highly $CO_2$-selective gas separation membranes based on segmented copolymers of poly(Ethylene oxide) reinforced with pentiptycene-containing polyimide hard segments", ACS Appl. Mater. Interfaces, 8, 2306 (2016). https://doi.org/10.1021/acsami.5b11355
  28. N. Sahiner, N. Pekel, and O. Guven, "Radiation synthesis, characterization and amidoximation of N-vinyl-2-pyrrolidone/acrylonitrile interpenetrating polymer networks", React. Funct. Polym., 39, 139 (1999). https://doi.org/10.1016/S1381-5148(97)00150-8
  29. H. Wu, X. Fang, X. Zhang, Z. Jiang, B. Li, and X. Ma, "Cellulose acetate-poly(N-vinyl-2-pyrrolidone) blend membrane for pervaporation separation of methanol/MTBE mixtures", Sep. Purif. Technol., 64, 183 (2008). https://doi.org/10.1016/j.seppur.2008.09.013
  30. W. N. W. Salleh and A. F. Ismail, "Carbon hollow fiber membranes derived from PEI/PVP for gas separation", Sep. Purif. Technol., 80, 541 (2011). https://doi.org/10.1016/j.seppur.2011.06.009
  31. A. A. Baqer, K. A. Matori, N. M. Al-Hada, A. H. Shaari, E. Saion, and J. L. Y. Chyi, "Effect of polyvinylpyrrolidone on cerium oxide nanoparticle characteristics prepared by a facile heat treatment technique", Results Phys., 7, 611 (2017). https://doi.org/10.1016/j.rinp.2017.01.020
  32. J. P. Jung, C. H. Park, J. H. Lee, Y.-S. Bae, and J. H. Kim, "Room-temperature, one-pot process for $CO_2$ capture membranes based on PEMA-g-PPG graft copolymer", Chem. Eng. J., 313, 1615 (2017). https://doi.org/10.1016/j.cej.2016.11.031
  33. S. Choi, J. H. Kim, and Y. S. Kang, "Wide-angle X-ray scattering studies on the structural properties of polymer electrolytes containing silver ions", Macromolecules, 34, 9087 (2001). https://doi.org/10.1021/ma010927z
  34. G. R. Mitchell and A. H. Windle, "Structure of polystyrene glasses", Polymer, 25, 906 (1984). https://doi.org/10.1016/0032-3861(84)90073-9
  35. B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999). https://doi.org/10.1021/ma9814548