Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.2.113

Effect of PVP on CO2/N2 Separation Performance of Self-crosslinkable P(GMA-g-PPG)-co-POEM) Membranes  

Kim, Na Un (Department of Chemical and Biomolecular Engineering, Yonsei University)
Park, Byeong Ju (Department of Chemical and Biomolecular Engineering, Yonsei University)
Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.28, no.2, 2018 , pp. 113-120 More about this Journal
Abstract
Global warming due to indiscriminate carbon dioxide emissions has a profound impact on human life by causing abnormal climate change and ecosystem destruction. As a way to reduce carbon dioxide emissions, in this study, we presented a polymeric membrane prepared by blending a self-crosslinkable P(GMA-g-PPG)-co-POEM (SP) copolymer and commercial polymer polyvinylpyrrolidone (PVP). As the content of PVP increased, it was observed that the gas permeance decreased and $CO_2/N_2$ selectivity increased. At 30 wt% PVP content, the $CO_2$ permeance of the membrane decreased from 72.9 GPU of pure SP polymer to 12.6 GPU, while $CO_2/N_2$ selectivity improved by 79% from 28.1 to 50.4. It results from the hydrogen bonding between the SP copolymer and PVP, leading to more compact structure of the polymer chains, which was confirmed by FT-IR, TGA, XRD and SEM analysis. Therefore, we suggest that the permeance and selectivity of the membranes can be easily adjusted as desired by controlling the PVP content in the SP/PVP polymer blend.
Keywords
self-cross-linkable copolymer; PVP; gas separation; $CO_2$ capture; blend membrane;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C. S. Adjiman, C. K. Williams, N. Shah, and P. Fennell, "An overview of $CO_2$ capture technologies", Energy Environ. Sci., 3, 1645 (2010).   DOI
2 M. Oschatz and M. Antonietti, "A search for selectivity to enable $CO_2$ capture with porous adsorbents", Energy Environ. Sci., 11, 57 (2018).   DOI
3 D. M. D'Alessandro, B. Smit, and J. R. Long, "Carbon dioxide capture: Prospects for new materials", Angew. Chem. Int. Ed., 49, 6058 (2010).   DOI
4 M. Binns, S.-Y. Oh, D.-H. Kwak, and J.-K. Kim, "Analysis of hybrid membrane and chemical absorption systems for $CO_2$ capture", Korean J. Chem. Eng., 32, 383 (2015).   DOI
5 C. Song, Q. Liu, N. Ji, S. Deng, J. Zhao, Y. Li, Y. Song, and H. Li, "Alternative pathways for efficient $CO_2$ capture by hybrid processes-A review", Renew. Sust. Energ. Rev., 82, 215 (2018).   DOI
6 C. E. Powell and G. G. Qiao, "Polymeric $CO_2/N_2$ gas separation membranes for the capture of carbon dioxide from power plant flue gases", J. Membr. Sci., 279, 1 (2006).   DOI
7 K. W. Ki and S. W. Kang, "1-Butyl-3-methylimidazolium tetrafluoroborate/$Al_2O_3$ composite membrane for $CO_2$ separation", Membr. J., 27, 226 (2017).   DOI
8 M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Pérez, and M. S. Rana, "Recent progress of fillers in mixed matrix membranes for $CO_2$ separation: A review", Sep. Purif. Technol., 188, 431 (2017).   DOI
9 L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991).   DOI
10 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).   DOI
11 S. Zulfiqar, M. I. Sarwar, and D. Mecerreyes, "Polymeric ionic liquids for $CO_2$ capture and separation: potential, progress and challenges", Polym. Chem., 6, 6435 (2015).   DOI
12 S. S. Swain, L. Unnikrishnan, S. Mohanty, and S. K. Nayak, "Effect of nanofillers on selectivity of high performance mixed matrix membranes for separating gas mixtures", Korean J. Chem. Eng., 34, 2119 (2017).   DOI
13 P. Guan, J. Luo, W. Li, and Z. Si, "Enhancement of gas permeability for $CH_4/N_2$ separation membranes by blending SBS to Pebax polymers", Macromol. Res., 25, 1007 (2017).   DOI
14 P. Luis and B. Bruggen, "The role of membranes in post-combustion $CO_2$ capture", Greenh. Gases, 3, 318 (2013).   DOI
15 Y. Choi and S. W. Kang, "Effect of 4-hydroxybenzoic acid on $CO_2$ separation performance of poly(ethylene oxide) membrane", Macromol. Res., 24, 1111 (2016).   DOI
16 S. H. Yeon, S. H. Ahn, J. H. Kim, K. B. Lee, Y. Jeong, and S. U. Hong, "Synthesis and gas permeation properties of poly(vinyl chloride)-graft-poly(vinyl pyrrolidone) membranes", Polym. Adv. Technol., 23, 516 (2012).   DOI
17 C. H. Park, J. P. Jung, J. H. Lee, and J. H. Kim, "Enhancement of $CO_2$ permeance by incorporating $CaCO_3$ in Mixed Matrix Membranes", Membr. J., 28, 55 (2018).   DOI
18 X. Zhu, C. Tian, C. L. Do-Thanh, and S. Dai, "Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based $CO_2$ separation", ChemSusChem, 10, 3304 (2017).   DOI
19 G. Guerrero, M.-B. Hägg, G. Kignelman, C. Simon, T. Peters, N. Rival, and C. Denonville, "Investigation of amino and amidino functionalized polyhedral oligomeric silSesquioxanes (POSS(R)) nanoparticles in PVA-based hybrid membranes for $CO_2/N_2$ separation", J. Membr. Sci., 544, 161 (2017).   DOI
20 J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, "Complexation mechanism of olefin with silver ions dissolved in a polymer matrix and its effect on facilitated olefin transport", Chem.-Eur. J., 8, 650 (2002).   DOI
21 S. W. Kang, J. Hong, J. H. Park, S. H. Mun, J. H. Kim, J. Cho, K. Char, and Y. S. Kang, "Nanocomposite membranes containing positively polarized gold nanoparticles for facilitated olefin transport", J. Membr. Sci., 321, 90 (2008).   DOI
22 S. Jeong and S. W. Kang, "Effect of $Ag_2O$ nanoparticles on long-term stable polymer/$AgBF_4/Al(NO_3)_3$ complex membranes for olefin/paraffin separation", Chem. Eng. J., 327, 500 (2017).   DOI
23 H. Basri, A. F. Ismail, and M. Aziz, "Polyethersulfone (PES)-silver composite UF membrane: Effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity", Desalination, 273, 72 (2011).   DOI
24 S. Luo, K. A. Stevens, J. S. Park, J. D. Moon, Q. Liu, B. D. Freeman, and R. Guo, "Highly $CO_2$-selective gas separation membranes based on segmented copolymers of poly(Ethylene oxide) reinforced with pentiptycene-containing polyimide hard segments", ACS Appl. Mater. Interfaces, 8, 2306 (2016).   DOI
25 N. U. Kim, B. J. Park, Y. Choi, K. B. Lee, and J. H. Kim, "High-performance self-cross-linked PGP-POEM comb copolymer membranes for $CO_2$ capture", Macromolecules, 50, 8938 (2017).   DOI
26 C. H. Park, J. H. Lee, J. P. Jung, B. Jung, and J. H. Kim, "A highly selective PEGBEM-g-POEM comb copolymer membrane for $CO_2/N_2$ separation", J. Membr. Sci., 492, 452 (2015).   DOI
27 J. H. Lee, C. H. Park, J. P. Jung, J.-H. Kim, and J. H. Kim, "Dual-phase all-polymeric membranes with graft copolymer filler for $CO_2$ capture", Chem. Eng. J., 334, 939 (2018).   DOI
28 N. Sahiner, N. Pekel, and O. Guven, "Radiation synthesis, characterization and amidoximation of N-vinyl-2-pyrrolidone/acrylonitrile interpenetrating polymer networks", React. Funct. Polym., 39, 139 (1999).   DOI
29 H. Wu, X. Fang, X. Zhang, Z. Jiang, B. Li, and X. Ma, "Cellulose acetate-poly(N-vinyl-2-pyrrolidone) blend membrane for pervaporation separation of methanol/MTBE mixtures", Sep. Purif. Technol., 64, 183 (2008).   DOI
30 W. N. W. Salleh and A. F. Ismail, "Carbon hollow fiber membranes derived from PEI/PVP for gas separation", Sep. Purif. Technol., 80, 541 (2011).   DOI
31 A. A. Baqer, K. A. Matori, N. M. Al-Hada, A. H. Shaari, E. Saion, and J. L. Y. Chyi, "Effect of polyvinylpyrrolidone on cerium oxide nanoparticle characteristics prepared by a facile heat treatment technique", Results Phys., 7, 611 (2017).   DOI
32 B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999).   DOI
33 J. P. Jung, C. H. Park, J. H. Lee, Y.-S. Bae, and J. H. Kim, "Room-temperature, one-pot process for $CO_2$ capture membranes based on PEMA-g-PPG graft copolymer", Chem. Eng. J., 313, 1615 (2017).   DOI
34 S. Choi, J. H. Kim, and Y. S. Kang, "Wide-angle X-ray scattering studies on the structural properties of polymer electrolytes containing silver ions", Macromolecules, 34, 9087 (2001).   DOI
35 G. R. Mitchell and A. H. Windle, "Structure of polystyrene glasses", Polymer, 25, 906 (1984).   DOI