DOI QR코드

DOI QR Code

The Effect of Carbon Dioxide Leaked from Geological Storage Site on Soil Fertility: A Study on Artificial Leakage

지중 저장지로부터 누출된 이산화탄소가 토양 비옥도에 미치는 영향: 인위 누출 연구

  • Baek, Seung Han (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Lee, Sang-Woo (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Lee, Woo-Chun (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Yun, Seong-Taek (Department of Earth and Environmental Sciences, Korea University) ;
  • Kim, Soon-Oh (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU))
  • 백승한 (경상국립대학교 지질과학과 및 기초과학연구소(RINS)) ;
  • 이상우 (경상국립대학교 지질과학과 및 기초과학연구소(RINS)) ;
  • 이우춘 (경상국립대학교 지질과학과 및 기초과학연구소(RINS)) ;
  • 윤성택 (고려대학교 지구환경과학과) ;
  • 김순오 (경상국립대학교 지질과학과 및 기초과학연구소(RINS))
  • Received : 2021.07.16
  • Accepted : 2021.08.20
  • Published : 2021.08.31

Abstract

Carbon dioxide has been known to be a typical greenhouse gas causing global warming, and a number of efforts have been proposed to reduce its concentration in the atmosphere. Among them, carbon dioxide capture and storage (CCS) has been taken into great account to accomplish the target reduction of carbon dioxide. In order to commercialize the CCS, its safety should be secured. In particular, if the stored carbon dioxide is leaked in the arable land, serious problems could come up in terms of crop growth. This study was conducted to investigate the effect of carbon dioxide leaked from storage sites on soil fertility. The leakage of carbon dioxide was simulated using the facility of its artificial injection into soils in the laboratory. Several soil chemical properties, such as pH, cation exchange capacity, electrical conductivity, the concentrations of exchangeable cations, nitrogen (N) (total-N, nitrate-N, and ammonia-N), phosphorus (P) (total-P and available-P), sulfur (S) (total-S and available-S), available-boron (B), and the contents of soil organic matter, were monitored as indicators of soil fertility during the period of artificial injection of carbon dioxide. Two kinds of soils, such as non-cultivated and cultivated soils, were compared in the artificial injection tests, and the latter included maize- and soybean-cultivated soils. The non-cultivated soil (NCS) was sandy soil of 42.6% porosity, the maize-cultivated soil (MCS) and soybean-cultivated soil (SCS) were loamy sand having 46.8% and 48.0% of porosities, respectively. The artificial injection facility had six columns: one was for the control without carbon dioxide injection, and the other five columns were used for the injections tests. Total injection periods for NCS and MCS/SCS were 60 and 70 days, respectively, and artificial rainfall events were simulated using one pore volume after the 12-day injection for the NCS and the 14-day injection for the MCS/SCS. After each rainfall event, the soil fertility indicators were measured for soil and leachate solution, and they were compared before and after the injection of carbon dioxide. The results indicate that the residual concentrations of exchangeable cations, total-N, total-P, the content of soil organic matter, and electrical conductivity were not likely to be affected by the injection of carbon dioxide. However, the residual concentrations of nitrate-N, ammonia-N, available-P, available-S, and available-B tended to decrease after the carbon dioxide injection, indicating that soil fertility might be reduced. Meanwhile, soil pH did not seem to be influenced due to the buffering capacity of soils, but it is speculated that a long-term leakage of carbon dioxide might bring about soil acidification.

이산화탄소가 지구온난화를 초래하는 대표적인 온실가스로 지목되면서 대기 중의 이산화탄소 농도를 줄이기 위하여 많은 노력들이 진행되어 왔다. 그러한 노력들 중 특히 CO2 포집 및 지중 저장기술(carbon dioxide capture and storage, CCS)이 감축 목표량을 달성하기 위해서 필수적으로 고려되고 있다. 그러나 이러한 지중 저장기술이 상용화되기 위해서는 안전성이 보장되어야 한다. 특히 이산화탄소 누출이 농경지에서 발생할 경우에는 작물 생장과 관련되어 많은 문제를 야기할 수 있다. 이에 본 연구에서는 지중 저장지로부터 누출된 이산화탄소가 토양 비옥도에 미치는 영향에 대하여 고찰하였다. 이를 위하여 인위적인 이산화탄소 누출 시험을 수행하였으며, pH, 양이온치환용량, 교환성 양이온, 전기전도도, 토양 유기물 함량, 총 질소, 질산태 질소, 암모니아태 질소, 총 인, 유효태 인산, 총 황, 유효태 황, 유효태 붕소 등과 같은 토양의 화학적 특성들을 비옥도 지시 인자로 선정하였다. 누출 시험은 비경작지 토양 한 종류와 경작지 토양 두 종류(옥수수와 콩 재배)를 대상으로 이루어졌다. 비경작지 토양은 거친 모래가 많은 사질토양으로 공극률은 42.6%로 조사되었으며, 경작지 토양인 옥수수 재배 토양은 양질 사토(loamy sand)로 공극률이 46.8%이었다. 콩과식물(soybean) 재배 토양은 옥수수 재배 토양과 동일한 양질 사토로서 공극률이 48%로 조사되었다. 누출시험을 위해 6개의 인공누출 칼럼 장치를 이용하여 이산화탄소를 주입하였다. 이산화탄소 주입은 비경작지와 경작지 토양의 경우 각각 60일과 70일 동안 진행하였다. 이산화탄소 누출 후 비경작지 및 경작지 토양에 대하여 각각 12, 14일 간격으로 1 공극 부피의 인공강우 모사 시험을 수행한 후 용출액과 토양 시료를 채취하여 비옥도 지시 인자를 분석하였으며, 이산화탄소 누출 전후 변화 양상을 비교 평가하였다. 토양 내 잔류 교환성 양이온, 전기전도도, 토양 유기물 함량, 총질소, 총인 등은 이산화탄소의 영향을 크게 받지 않은 것으로 나타났다. 그러나 질산태 질소, 암모니아태 질소, 유효 인산, 유효 황, 유효 붕소 등은 감소하는 경향을 보였으며 이에 의해 토양 비옥도를 저하시킬 수 있을 것으로 판단된다. 본 연구에서는 토양의 완충능력 때문에 pH의 변화가 없었지만, 이산화탄소가 장기간 누출된다면 pH의 감소에 의한 토양 산성화가 초래될 가능성이 있을 것으로 예측된다.

Keywords

Acknowledgement

본 연구는 환경부의 재원으로 환경산업기술원의 이산화탄소 지중 저장 환경관리(K-COSEM) 연구단의 지원을 받아 수행되었습니다(과제번호: 2018001810001).

References

  1. Al-Traboulsi, M. Sjogersten, S., Colls, J., Steven, M., Craigon, J. and Black, C. (2012) Potential impact of CO2 leakage from carbon capture and storage (CCS) systems on growth and yield in spring field bean. Environ. Exper. Botany, v.80, p.43-53. doi: 10.1016/j.envexpbot.2012.02.007
  2. Boise, E., Amaechi, C.F., Nnaji, G.U., Boise, O. and Erhunmwunse, N.O. (2016) Effects of elevated soil carbon dioxide (CO2) concentrations on spring wheat(Triticum aestivum L.) and soil chemical properties in Sutton Bonington Campus of the University of Nottingham, UK. J. Appl. Sci. Environ. Manag., v.20, p.293-301. doi: 10.4314/jasem.v20i2.9
  3. Buragiene, S., Sarauskis, E., Romaneckas, K., Adamaviciene, A., Kriauciuniene, Z., Avizienyte, D., Marozas, V. and Naujokiene, V. (2019) Relationship between CO2 emissions and soil properties of differently tilled soils. Sci. of Total Environ., v.662, p.786-795. doi: 10.1016/j.scitotenv.2019.01.236
  4. Chae, M.-J., Roh, A.-S., Yoon, B.-S., Kim, S.-K., Yun, Y.-U., Ahn, B.-G., Kim, S.G., Park, S.-J., Cho, H.-J., Kang, H.-J., Yun, S.-G., Kim, Y.-H., Kong, M.-S., Lee, E.-J., Jung, H.-I., Hong, S.-Y. and Jung, G.-B. (2018) Evaluation of chemical properties and heavy metals in upland soils in Korea. Proceedings of the Spring conference of the Korean Society of Soil Sciences and Fertilizer, p.74-75. http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07448455
  5. Chen, F, Zhang, F., Ma, J., Yang, Y., Zhang, S. and Chen, R. (2017) Experimental study on the effects of underground CO2 leakage on soil microbial consortia. Intern. J. Greenhouse Gas Control, v.63, p.241-248. doi: 10.1016/j.ijggc.2017.05.017
  6. Cheng, L., Zhu, J., Chen, G., Zheng, X., Oh, N.-H., Rufty, T.W., deB, Richter, D. and Hu, S. (2010) Atmospheric CO2 enrichment facilitates cation release from soil. Ecology Letters, v.13, p.284-291. doi: 10.1111/j.1461-0248.2009.01421.x.
  7. Choi, M.-T., Lee, J.-I., Yun, Y.-U., Lee, J.-E., Lee, B.-C., Yang, E.- S. and Lee, Y.-H. (2010) Characteristics of fertility on strawberry culitvated soil of plastic film house in Chungnam Province in Korea. Korean J. Soil. Sci. Fert., v.43, p.160-165.
  8. Derakhshan-Nejad, Z., Lee, W., Han, S., Choi, H., Yun, S.-T. and Lee, G. (2020) Effects of soil moisture content on CO2 triggered soil physicochemical properties in a near-surface environment. J. Soils and Sediments, v.20, p.2107-2120. doi: 10.1007/s11368-020-02585-4
  9. Fernandez-Montiel, I., Pedescoll, A. and Becares, E. (2016) Microbial communities in a range of carbon dioxide fluxes from a natural volcanic vent in Campo de Calatrava, Spain. Inter. J. Greenhouse Gas Control v.50, p.70-79. doi: 10.1016/j.ijggc.2016.04.017.
  10. Gao, Z., Zhang, H., Shi, M., Fang, S. Cui, Y. and Liu, J. (2020) Characteristics of soil CO2 under different conditions and its infuence on water chemical composition: an experimental and modeling study in the laboratory. Environ. Earth Sci., v.79, article no: 431. doi: 10.1007/s12665-020-09183-0
  11. Hasegawa, S., Macdonald, C. and Power, S.A. (2016) Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Global Change Biology, v.22, p.1628-1643. doi: 10.1111/gcb.13147
  12. He, W., Yoo, G., Moonis, M., Kim, Y. and Chen, X. (2019) Impact assessment of high soil CO2 on plant growth and soil environment: a greenhouse study. PeerJ, v.7, article no: e6311. doi: 10.7717/peerj.6311
  13. Hong, S.-D., Kim, J.-J., Min, K.-B., Kang, B.-G. and Kim, H.-J. (2000) Fertility evaluation of upland fields by combination of landscape and soil survey data with chemical properties in soil. Korean J. Soil. Sci. Fert., v.33, p.221-233.
  14. Hong, S.-D. and Park, H.-T. (1999) Soil fertility evaluation with adoption of soil map database for tobacco fields. Korean J. Soil. Sci. Fert., v.32, p.95-108.
  15. Ketterings, Q., Miyamoto, C., Mathur, R.R., Dietzel, K. and Gami, S. (2011) A comparison of soil sulfur extraction methods. Soil Sci. Soc. Am. J., v.75, p.1578-1583. doi: 10.2136/sssaj2010.0407
  16. Kim, K.H., Kim, G.Y., Kim, J.G., Sa, D.M., Seo, J.S., Son, B.G., Yang, J.E., Eom, G.C., Lee, S.E., Jeong, K.Y., Jeong, D.Y., Jeong, Y.T., Jeong, J.B. and Hyun, H.N. (2006) Soil. Hyangmoonsa, 471p.
  17. Kim, Y.-S., Goo, N.-I. and Kang, Y.-S. (2018) Evaulation of properties of forest soils using plant response methods. Research Report 18-18, National Institute of Forest Science. 69p.
  18. Kouadio, L., Deo, R.C., Byrareddy, V., Adamowski, J.F. Mushtaq, S. and Nguyend, V.P. (2018) Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties. Computers and Electronics in Agriculture, v.155, p.324-338. doi: 10.1016/j.compag.2018.10.014
  19. Kozhukhov, A., Gurin, A. and Rezvyakova, S. (2020) Main elements of nutrition content in the soil for maize crops, depending on the predecessors and methods of soil treatment. E3S Web of Conferences, v.106, article no: 01103. doi: 10.1051/e3sconf/202016101103
  20. Ma, J., Zhang, W., Zhang, S., Zhu, Q., Feng, Q. and Chen, F. (2017) Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario. PeerJ, v.5, article no: e4024. doi: 10.7717/peerj.4024
  21. Ma, J., Zhu, X., Liu, D., Wang, S., Xue, L., Li, Q., Ma, J., Li, X., Nie, L., Zhao, X., Qi, B., Wei, Y., Jiang, S., Yu, H. and Huang, C. (2014) Effects of simulation leakage of CCS on physicalchemical properties of soil. Energy Procedia, v.63, p.3215-3219. doi: 10.1016/j.egypro.2014.11.347
  22. Meter Group AG (2018) Operation manunal HYPROPII. v.3, p.2. http://library.metergroup.com/Manuals/18263_HYPROP_Manual_Web.pdf
  23. Mikkelsen, M., Jorgensen, M. and Frederik, C.K. (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., v.3, p.43-81. doi: 10.1039/B912904A
  24. Moonis, M., He, W., Kim, Y. and Yoo, G. (2017) Effect of potential CO2 leakage from carbon capture and storage sites on soil and leachate chemistry. KSCE J. Civil Engrg., v.21, p.1640-1647. doi: 10.1007/s12205-016-1867-5
  25. Morales, S.E. and Holben, W.E. (2013) Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak. PLOS ONE, v.8, article no: e81742. doi: 10.1371/journal.pone.0081742
  26. RDA(Rural Development Administration of Korea) (2010) Methods of soil chemical analysis. National academy of agricultural science of Korea. http://lib.rda.go.kr/search/mediaView.do?mets_no=000000012988
  27. Oh, N.-H. and Richter Jr, D.D. (2004) Soil acidification induced by elevated atmospheric CO2. Global Change Biology, v.10, p.1936-1946. doi: 10.1111/j.1365-2486.2004.00864.x
  28. Onyenali, T., Olowe, V., Fabunmi, T. and Soretire, A. (2019) Organic fertilizers improve the growth, seed quality and yield of newly released soybean (Glycine max (L.) Merrill) varieties in the tropics. Organic Agriculture, v.10, p.155-170. doi: 10.1007/s13165-019-00258-2
  29. Saenz de Miera, L.E., Arroyo, P., Calabuig, E.L., Falagan, J. and Ansola, G. (2014) High-throughput sequencing of 16S RNA genes of soil bacterial communities from a naturally occurring CO2 gas vent. Inter. J. Greenhouse Gas Control, v.29, p.176-184. doi: 10.1016/j.ijggc.2014.08.014
  30. Saha, U.K., Sonon, L. and Biswas, B.K. (2018) A comparison of diffusion-conductimetric and distillation-titration methods in analyzing ammonium- and nitrate-nitrogen in the KCl-extracts of Georgia soils. Communications in Soil Sci. Plant Anal., v.49, p.63-75. doi: 10.1080/00103624.2017.1421647
  31. Seigo, S.L'O., Dohle, S. and Siegrist, M. (2014) Public perception of carbon capture and storage (CCS): A review. Renew. Sustain. Energy Rev., v.38, p.848-863. doi: 10.1016/j.rser.2014.07.017
  32. Souza, J.A., Fratoni, M.M.J., Moraes, L.A.C. and Moreira, A. (2018) Boron and amino acid foliar application on wheatsoybean intercropping in a non-tillage system. Communications in Soil Sci. Plant Anal., v.49, p.1638-1649. doi: 10.1080/00103624.2018.1474902
  33. Touhami, D., McDowella, R.W., Condron, L.M., Lieffering, M. and Newton, P.C.D. (2020) Long-term atmospheric carbon dioxide enrichment decreases soil phosphorus availability in a grazed temperate pasture. Geoderma, v.378, article no: 114621. doi: 10.1016/j.geoderma.2020.114621
  34. US EPA (1986) SW-846 test method 9081: Cation-exchange capacity of soils (sodium acetate), In: Test methods for evaluating solid waste: Physical/chemical methods. https://www.epa.gov/hw-sw846/sw-846-test-method-9081-cation-exchangecapacity-soils-sodium-acetate
  35. van Reeuwijk, L.P. (2002) Technical paper 09: Procedures for soil analysis (6th ed.), International Soil Reference and Information Centre, Wageningen, The Netherlands. https://www.isric.org/sites/default/files/ISRIC_TechPap09.pdf
  36. White, C.M., Strazisar, B.R., Granite, E.J., Hoffman, J.S. and Pennline, H.W. (2003) Separation and capture of CO2 from large stationary sources and sequestration in geological formations-coalbeds and deep saline aquifers. J. Air Waste Manag. Assoc., v.53, p.645-715. doi: 10.1080/10473289.2003.10466206
  37. Yang, J.-E., Cho, B.-O., Shin, Y.-O. and Kim, J.-J. (2001) Fertility status in northeastern alpine soils of South Korea with cultivation of vegetable crops. Korean J. Soil. Sci. Fert., v.34, p.1-7.
  38. Yoon, J.H., Jung, B.G., Kim, Y.H. and Shin, J.S. (1996) The contents of sulfate-sulfur of the recent soils of Korea. Proceedings of the International Conference on the Sulfur, The Mineralogical Society of Korea, p.25-35.
  39. Yu, L., Lu, X., He, Y., Brookes, P.C., Liao, H. and Xu, J. (2017) Combined biochar and nitrogen fertilizer reduces soil acidity and promotes nutrient use efficiency by soybean crop. J. Soils Sediments, v.17, p.599-610. doi: 10.1007/s11368-016-1447-9
  40. Zhao, X., Deng, H., Wang, W., Han, F., Li, C., Zhang, H. and Dai, Z. (2017) Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau. Scientific Reports, v.7, article no: 3001. doi: 10.1038/s41598-017-02500-x