• Title/Summary/Keyword: 우레탄

Search Result 287, Processing Time 0.024 seconds

The Development of the Unfading Urethane Polymer Based on Reversible Properties for Ceramics and Restoration with This Urethane Product (가역성을 갖는 도자기 복원용 무황변 우레탄 수지의 개발과 이를 이용한 도자기의 복원)

  • Han, Won-Sik;Park, Gi-Jung;Lim, Sung-Jin;Lee, Young-Hoon;Hong, Tae-Kee;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.26 no.2
    • /
    • pp.183-190
    • /
    • 2010
  • We fabricated urethane material based on properties of reversible and unfading for antic-ceramics restoration. This material with low viscosity was made hardness control possible that user want. And it have very strong adhesion and shear strength properties and is shown the best properties for pigment filling, anti-contractibility, coloring as like epoxy system materials. Particularly, the yellowing and ir-reversibility problem in epoxy restoration material were finally solved. So, there is guarantee in the eternity and stabilization of restoration for antic-celamics. And in order to show the reversible state of the restoration, we successfully dissolve this urethane materials in solvent after perfect restoring subsequently.

Synthesis of UV-Curable Six-Functional Urethane Acrylates Using Pentaerytritol Triacrylate and Their Cured Film Properties (Pentaerytritol Triacrylate를 이용한 광경화용 6관능 우레탄 아크릴레이트 합성과 경화필름 물성에 관한 연구)

  • Moon, Byoung-Joon;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.183-188
    • /
    • 2011
  • Pentaerytritol triacrylate (PETA) was synthesized by a condensation reaction between pentaerytritol and acrylic acid. The highest yield of PETA was obtained when heptane was used as a solvent under the 1:4 mole ratio of pentaerytritol and acrylic acid. The 6-functional urethane acrylates(UA) were also synthesized by a condensation reaction between PETA and diisocyanate. Cured films were prepared from the mixtures of UA oligomer, reactive diluents and UV initiator to investigate their physical properties. The thermal stability of the aliphatic urethane acrylate was better than that of the aromatic urethane acrylate. The UA-2 showed good hardness and scratch resistance properties while the UA-l with a high degree of curing density exhibited a better chemical resistance. All the UA oligomers showed fairly good adhesion strengths but the other physical properties of UA-3 were poor due to its low curing density.

Effect of Urethane Modification on the Anti-Bullet Property of Dyneema/vinylester Composites (우레탄 수지 첨가에 의한 다이니마/비닐에스터 복합재료의 방탄효과 향상 연구)

  • Yoon, T.H.;Cha, Y.M.;Yuck, J.I.;Paik, J.G.;Oh, Y.J.;Kim, H.J.
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.7-11
    • /
    • 2011
  • Polyurethane oligomers (PUOs) such as UA8297, UP127 and EB8200 were utilized to enhance the anti-bullet property of Dyneema$^{(R)}$/vinylester composites. First, prepregs of PUO and vinylester (XSR10) were prepared via spray coating on Dyneema$^{(R)}$ fabric at 21 % resin content (by volume). In addition, spray coating and film lamination were also carried out with a mixture of XSR10/PUO for selected PUOs. Next, the prepregs were dried at RT for 1-2 h and then at $100^{\circ}C$ for 30 min to remove the solvent and to provide partial cure when necessary. The prepregs were stacked in 24 layers and cured at $120^{\circ}C$ for 5 min under the contact pressure and for additional 25 min at 150 $kg/cm^2$. Finally, the anti-bullet properties of composite samples were evaluated by measuring $V_{50}$ with simulated fragment projectile (SFP, 17 gr). The results showed a 6.5 and 9.0 % increase of $V_{50}$ with UP127 and EB8200, respectively.

Evaluation of Mechanical Properties and Low-Velocity Impact Characteristics of Balsa-Wood and Urethane-Foam Applied to Impact Limiter of Nuclear Spent Fuel Shipping Cask (사용후핵연료 수송용기 충격완충체에 적용되는 발사목과 우레탄 폼의 기계적 특성 및 저속충격특성 평가 연구)

  • Goo, Jun-Sung;Shin, Kwang-Bok;Choi, Woo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1345-1352
    • /
    • 2012
  • This paper aims to evaluate the low-velocity impact responses and mechanical properties of balsa-wood and urethane-foam core materials and their sandwich panels, which are applied as the impact limiter of a nuclear spent fuel shipping cask. For the urethane-foam core, which is isotropic, tensile, compressive, and shear mechanical tests were conducted. For the balsa-wood core, which is orthotropic and shows different material properties in different orthogonal directions, nine mechanical properties were determined. The impact test specimens for the core material and their sandwich panel were subjected to low-velocity impact loads using an instrumented testing machine at impact energy levels of 1, 3, and 5 J. The experimental results showed that both the urethane-foam and the balsa-wood core except in the growth direction (z-direction) had a similar impact response for the energy absorbing capacity, contact force, and indentation. Furthermore, it was found that the urethane-foam core was suitable as an impact limiter material owing to its resistance to fire and low cost, and the balsa-wood core could also be strongly considered as an impact limiter material for a lightweight nuclear spent fuel shipping cask.

Study on the Urethane Restoration Filling Material and Adhesive for Stone Cultural Heritage (석조문화재 복원용 우레탄 메움제 및 접착제에 관한 연구)

  • Han, Won-Sik;Lee, Ho-Youn;Park, Gi-Jung;Hong, Tae-Kee;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.115-121
    • /
    • 2011
  • A Urethane resin restoration material was made to be used in the restoration of stone cultural assets. The Urethane resin restoration material showed strong adhesive strength and tensile strength similar to epoxy recovery material, which had been mainly used for the recovery of stone cultural assets. The sealing property, anti-shrinking property and paint-ability of Urethane resin restoration material are also similar to existing epoxy system restoration materials. Especially, this Urethane resin restration material is expected to give permanence and continuous stability in the restoration of cultural assets made in stone by resolving the two big issues of existing epoxy recovery material, which are 'yellowing' and 'ir-reversibility'. This Urethane resin restration material had been directly applied as a filling material and adhesive and it was dissolved again. The Urethane resin, which had been used for the recovery, was able to be perfectly removed, which means that this Urethane resin recovery material has perfect reversibility. This Urethane resin restoration material also has enhanced convenience since user can adjust the working-life dependent on work environment. It is believed that this Urethane resin restoration material can also be used as a filling material or adhesive for other cultural assets made of ceramic or metal heritage, in addition to stone, since it has strong adhesive strength and tensile strength.

Synthesis and characterization of PPG-based urethane-modified epoxy resin for enhancing impact resistance of epoxy composite resin (에폭시 복합수지의 내충격성을 향상을 위한 PPG 기반 우레탄 변성 에폭시 합성 및 특성 분석)

  • Hwang, Chiwon;Jeon, Jaehee;Ahn, Dowon;Yu, Youngchang;Lee, Wonjoo
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.44-52
    • /
    • 2022
  • Epoxy resin has the disadvantage of being easily destroyed by instantaneous impact due to its high crosslinking density despite its high glass transition temperature (Tg) and excellent properties. To compensate for this, in this study, polyol was synthesized by ring opening polymerization of propylene glycol (PPG) diamine, Jeffamine D 2000 and propylene carbonate, and urethane modified epoxy was synthesized using this. The properties of the synthesized urethane modified epoxy were confirmed by FT-IR, H-NMR. To confirm the degree of improvement in impact resistance as an adhesive, a urethane modified epoxy adhesive was prepared by mixing a digylcidyl ether bisphenol A (DGEBA) with curing agent and curing accelerator. Properties test of urethane modified epoxy were shear strength, tensile strength and impact strength. As a result, excellent results were obtained in all test when the ratio of DGEBA : urethane modified epoxy was 8:2.

Open-Cell Rigid Polyurethane Foam Using Reactive Cell Opening Agents (반응성 기포개방제를 이용한 개방기포형 경질우레탄폼)

  • Ahn, WonSool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2524-2528
    • /
    • 2013
  • Cell opening characteristics dependent on the cell openers for the conventional formulation of a closed-cell polyurethane foam (PUF) was studied using 1-butanol and lithium salt of 12-hydroxystearic acid (Li-12HSA) as the reactive cell opening agents. While cell openining content of only 10.5 % was obtained for the sample with 4 phr of 1-butanol as the single reactive cell opener, that of 98.0% could be obtained for the sample with 2 phr of Li-12HSA as the reactive co-cell opener. As the results, it showed that a fully open-cell rigid PUF could be obtained by introducing a novel reactive cell opener, having a functional group able to form a bulky side-chain on the urethane networks, without severe loss of mechanical properties of the closed-cell PUF like cell size, bulk density, and thermal conductivity.

Synthesis and Characterization of Poly(urethane-ethyl acrylate) Hybrid Emulsion (폴리(우레탄-에틸 아크릴레이트) 혼성 에멀젼의 합성과 물성 비교 연구)

  • Cheong, In Woo;Lee, Jong Kil;Kim, Jung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.86-92
    • /
    • 2005
  • Poly(urethaneethyl acrylate) hybrid emulsions were synthesized to improve their thermomechanical and solvent resistance properties. In the synthesis, dimethylol propionic acid was used to impart hydrophilicity to the hybrid polymers, and ethyl acrylate monomer was added to the polyurethane prepolymer after neutralization with triethylamine. After dispersion of the neutralized prepolymer, chain extension was carried out with ethylene diamine. Consequently, poly(urethaneethyl acrylate) hybrid emulsion was prepared via soap free emulsion polymerization of ethyl acrylate with reduction-oxidation initiator couple of t-butyl hydroperoxide/sodium bisulfite at $50^{\circ}C$. Tehsile strength, 100% modulus, elongation, and solvent-resistance properties of the hybrid emulsion were measured and compared with those of polyurethane homopolymer, poly(ethyl acrylate) homopolymer, and simple blended samples.