연속시간모형은 시간의 흐름에 대응되는 자본자산의 운동의 성질과 시간의 흐름에 따라 형성되는 자본자산의 가격을 동시적으로 파악할 수 있는 것이 큰 장점이다. 연속시간 확률미분방정식을 구성하는 표류함수와 확산함수가 폐형해나 해석적 형태로 존재하지 않는 경우가 대부분이다. 여기에서 모수추정의 어려움이 발생한다. 전이 확률밀도함수의 인지 또는 발견의 어려움과 표류함수와 확산함수의 적분 불가능성은 최대가능도법의 사용을 어렵게 만든다. 여기에서 모수방법 보다는 비모수방법을 통하여 연속 확률 미분방정식을 추정하려는 성향이 존재한다. 밀도를 모르면 표본적률을 사용하여 모수를 추정할 수 있으므로 일반화 적률법이 연속시간 확률미분방정식의 모수 추정과 검정에 사용되고 있다. 전이밀도의 값을 시뮬레이션을 통하여 얻는 마코브연쇄 몬테카를로 방법, 전이밀도를 무한소 생성작용소를 통하여 얻는 방법, 비 모수방법, 여러 종류의 전개에 의하여 얻은 표류함수와 확산함수의 전이밀도에 대한 최대가능도법 등 여러 종류의 연속시간 확률미분방정식의 실증분석에서 사용되고 있다. 이 논문에서는 연속시간 확률미분방정식의 실증분석 방법들을 정리하는데 목적이 있다. 이일균(2004)은 이 논문과의 자매논문으로 시뮬레이션에 의한 확률미분방정식의 추정을 다루고 있어 시뮬레이션방법은 그 논문에 미룬다.
In this paper, we first analysis definition of continuity of functions in high school textbooks, the mathematics high school curriculum and university mathematics textbooks. We surveyed what was causing the students to struggle in their concept image of continuity of functions. We arrived at that students' concept for errors in images of continuity of function were caused by definition of continuity of functions in high school textbooks.
In school mathematics, the concept of continuous functions has been intuitively taught. Many researches reported that many students identified the continuity of function with the connectedness of the graphs. Several researchers proposed some ideas which are enhancing the formal aspects of the definition as alternative. We analysed the historical developments of the concept of continuous functions and drew pedagogical implications for the intuitive teaching of continuous functions from the result of analysis.
This study investigated the Aristotle's continuity and the historical development of continuity of function to explore the differences between the concepts of mathematics and students' thinking about continuity of functions. Aristotle, who sought the essence of continuity, characterized continuity as an 'indivisible unit as a whole.' Before the nineteenth century, mathematicians considered the continuity of functions based on space, and after the arithmetization of nineteenth century modern ${\epsilon}-{\delta}$ definition appeared. Some scholars thought the process was revolutionary. Students tended to think of the continuity of functions similar to that of Aristotle and mathematicians before the arithmetization, and it is inappropriate to regard students' conceptions simply as errors. This study on the continuity of functions examined that some conceptions which have been perceived as misconceptions of students could be viewed as paradigmatic thoughts rather than as errors.
The purpose of this study is to analyze the difference and inter-connectivity between the definition of continuity in school mathematics and the definition of academic mathematics in four perspectives. These difference and inter-connectivity have not analyzed in previous papers. According to this study, the definition of 'continuity and discontinuity at one point' in school mathematics depends on the limit processing but in academic mathematics it depends on the topology of the domain. The target function of the continuous function in school mathematics is a function whose domain is limited to an interval or a union of intervals, but the target function of the continuous function in academic mathematics is all functions. Based on these results, the following two opinions are given in relation to the concept of continuity in school mathematics. First, since the notion of local continuity in school mathematics is based on limit processing, the contents of 2009-revised textbooks that deal with discontinuity at special point not belonging to the domain is appropriate. Here the discontinuity appears as types of infinite discontinuity, removable discontinuity, and step discontinuity. Second, the definition of a general continuous function is proposed to "if there is no discontinuity point in the domain of a function y = f(x), we call the function f a continuous function." This definition allows the discontinuity at special point in non-domain, but is consistent with the definition in academic mathematics.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.279-283
/
2012
유역 유출 연속모의 모형은 수자원 계획과 효율적인 물 관리 정책 수립에 중요한 도구가 된다. 유역 유출 연속모의 모형에는 다수의 매개변수가 있으며, 이러한 매개변수는 모형 보정을 통해 추정된다. 연구에서 사용한 모형은 SWMM이며 집합체 혼합 진화 알고리즘으로 자동 보정하였다. 자동 보정에 사용되는 최적화 알고리즘은 목적함수에 따라 상이한 결과를 도출하기도 한다. 이에 따라 본 연구에서는 유역 유출 모형의 자동보정에 적합한 목적함수를 선정하기 위하여 4개의 목적함수를 구성하였고, 밀양댐 유역에 적용하였다. 그리고 목적함수에 따른 자동 보정의 결과를 평가하기 위해 5가지의 평가지표를 활용하였다. 보정의 결과, 모든 목적함수에서 공통적으로 첨두유량의 오차는 다소 크게 발생하였다. 그리고 잔차 절대값의 합이 최소가 되도록 구성한 목적함수가 다른 목적함수에 비해 상대적으로 양호한 결과를 도출하였지만, 목적함수에 따른 큰 차이는 없었다. 또한, 유역 유출 연속모의에서는 유역의 물수지가 중요한 요소이므로 향후, 보다 정확도 높은 유역 유출 연속모의 모형의 자동 보정을 위해서는 첨두유량과 물수지와 관련된 오차를 제어할 수 있는 추가적인 기법이 요구된다.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.255-255
/
2011
본 연구에서는 저류함수 기반의 시단위 연속형 강우-유출모형인 SURR모형을 장기유출 모의가 가능한 일 단위 모형으로 확장하여 그 적용성을 평가하고자 한다. 저류함수모형은 단일 호우사상에 대한 집중형 단기유출 모형으로 개발되어 장기유출 모형으로서의 활용성은 검토되지 못한 실정이다. 기존의 연구(셩영두 외, 2008)에서는 사상형 저류함수모형을 장기유출모형으로 적용하는데 그쳤으므로 유역 수문성분 모의가 가능한 연속형 장기유출 모형의 개발이 필요하다. 이를 위해 대상유역은 한강유역을 채택하였으며 일단위 기상자료와 수문자료를 구축하였다. 기존의 시단위 유역 수문성분(토양수분, 실제증발산량, 지표유출량, 중간유출량, 지하수유출량) 산정방법과 시단위 유역 및 하도 저류함수를 일단위로 확장하여 2002년부터 2009년까지 장기 유출모의를 실시하고자 한다. 본 연구 결과는 시단위 유출모의와 일단위 유출모의가 동시에 가능한 모형 개발에 활용할 수 있을것으로 판단된다.
Proceedings of the Korea Society for Industrial Systems Conference
/
1998.10a
/
pp.785-790
/
1998
본 논문은 한국어 숫자를 연속적으로 발음한 음성의 음절 개수 검출에 관한 내용이며 음절의 최소구간 및 스펙트럼 에너지에 대한 확률밀도함수를 이용하여 연속 음성에서 음절갯수검출 알고리듬을 제안, 실험을 통하여 그 유효성을 확인하고자한다. 이를 위하여 음성자료로서는 국어 공학센터(KLE)에서 채록한 4연속 숫자음을 사용하며 음향학적 특징을 분석하기 위하여 확률밀도함수 및 음절의 최소구간 및 단위시간의 확률밀도 함수의 값을 이용하였다. 그 결과 KLE 데이터에서 스펙트럼에너지만 이용한 경우 고립음절을 3.7%이며 본 논문의 알고리듬을 적용한 경우 4음절은 약 60%의 결과가 되며 제안한 방법의 유효성을 확인하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.4
/
pp.525-529
/
2011
We introduce the concept of IVF almost ${\alpha}$-continuity and investigate characterizations for such mappings on the interval-valued fuzzy topological spaces. We study the relationships between IVF almost ${\alpha}$-continuous mappings and another types of IVF continuous mappings.
This paper presents a new way of texture mapping on the Genus N object constructed over a single domain. The problem of 2D texture mapping is the discontinuity of texture domain at the virtual boundary on the object. Such phenomenon decreases smoothness of the object as well as looks unnatural. Especially it is necessary for the Genus N object of infinite coninuity to apply the seamless texture mapping. For seamless texture mapping, a multiperiodic function, which transforms a discontinuous function into a continuous function, is suggested. In some applications, however, the visual seams on the textured object provide more realistic appearance. Therefore, this research supports the interactive control from the discontinuity and the continuity across the boundary using the coefficient of the weight function.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.