• 제목/요약/키워드: 역동적 기하환경

검색결과 13건 처리시간 0.026초

역동기하 환경에서 "끌기(dragging)"의 역할에 대한 고찰 (Review of the Role of Dragging in Dynamic Geometry Environments)

  • 조정수;이은숙
    • 대한수학교육학회지:학교수학
    • /
    • 제15권2호
    • /
    • pp.481-501
    • /
    • 2013
  • 본 연구는 역동기하 환경에서 "끌기"의 역할을 고찰하고자 한다. 끌기는 도형을 역동적으로 변화시키면서 기하 도형의 숨겨진 성질과 이들 사이의 관계를 나타내는 불변성을 탐색 가능하게 하는 중요한 역할을 한다. 따라서 본 연구는 선행 연구의 분석을 통해 역동기하 환경에서 끌기의 사용이 세 가지 관점으로, 즉 역동적 표상, 도구유발행위, 그리고 어포던스로 구분될 수 있다는 결론을 도출하였다. 본 연구에서는 끌기의 사용에 대한 이들 각각의 관점을 선행 연구를 중심으로 살펴보았다. 그리고 이로부터 (1) 연역적, 공리적, 형식적 지필기하를 실험수학으로 접근할 수 있게 하는 끌기의 가능성 탐구, (2) 추측과 증명 사이에서 끌기의 유형에 따른 작용 분석, (3) 학생과 DGS 사이의 도구발생 과정에 따른 기하 학습의 차이 분석, (4) 끌기에 의한 의사소통이나 담화 유형의 분석, (5) 어포던스로서 끌기에 의해 수반되는 측정 기능의 역할 분석, 그리고 (6) 끌기에 의한 기하 개념의 정의에 대한 학생들의 인식론적 변화를 기하의 교수-학습과 후속연구를 위한 제언으로 제시하고 있다.

  • PDF

역동적 기하 환경에서 비례를 이용한 이차방정식의 지도 (Study on the teaching of quadratic equation through proportions in a dynamic environment)

  • 류희찬;윤옥교
    • 대한수학교육학회지:학교수학
    • /
    • 제14권4호
    • /
    • pp.565-577
    • /
    • 2012
  • 본 연구에서는 중학교 3학년 학생들에게 닮은 삼각형의 대응변 사이에 성립하는 비례적 성질에 기초하여 역동적 기하환경에서 이차방정식 $x^2-ax+b^2=0$의 해를 작도할 수 있는 기회를 제공하였다. 이 예비연구를 통해 이차방정식의 해에 대한 학생들의 기하학적 직관을 촉진시키고 $a$$b$의 값에 따라 이차방정식의 해가 어떻게 달라지는지 시각적으로 확인해 보게 하였다. 또한, 이 과정에서 학생들이 이차방정식의 해를 구하기 위해서 어떤 전략을 사용하는지 분석하여 이차방정식 지도 방법의 새로운 가능성을 살펴보고자 하였다.

  • PDF

GSP를 활용한 역동적 기하 환경에서 기하적 성질의 추측 (A Study on Students' Conjecturing of Geometric Properties in Dynamic Geometry Environments Using GSP)

  • 손홍찬
    • 대한수학교육학회지:학교수학
    • /
    • 제13권1호
    • /
    • pp.107-125
    • /
    • 2011
  • 본 논문에서는 GSP(The Geometer's Sketchpad)를 이용한 역동적 기하 환경이 학생의 기하학적 성질의 추측에 어떤 영향을 미치는지를 살펴보았다. 좀 더 구체적으로 살피면, GSP 환경에서 학생들은 문제 상황에서 주어지지 않은 새로운 조건들을 생성하고 그 조건하에서 성질을 추측하는 활동이 활발하고, 문제의 조건이 너무 적은 개방적인 문제 상황에서는 추측 활동이 미약하였다. 또한 GSP 환경에서 추측한 성질은 지필환경에서 추측한 성질보다 복잡하였고 증명하기 어려웠으며 GSP의 다양한 기능 중 'Alt' 키를 이용하여 화면을 이동시킬 수 있는 기능은 측정과 계산 기능 등 과 같이 기하적 성질의 추측에 요긴하게 사용되었다. 또한 학생들은 기하적 성질을 증명할 때보다 스스로 기하적 성질을 발견하였을 때 더 자부심을 갖게 되며 더 기쁘게 생각하였다.

  • PDF

JAVA를 이용한 중학교 기하영역 자료개발 -GSP로 구현한 피타고라스 정리-

  • 계영희;김종민
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제13권2호
    • /
    • pp.515-525
    • /
    • 2002
  • 중학교 기하영역 중 피타고라스의 정리를 논증적인 증명 대신에 역동적인 방법으로 이해할 수 있도록 GSP(Geometer's Skechpad)를 활용하여 구현했으며, 멀티미디어 환경에 익숙한 중학생들에게 시 ${\cdot}$ 공간을 초월하여 웹 상에서 개별학습, 반복학습을 할 수 있도록 JAVA 언어를 사용하여 웹으로 변환시켰다.

  • PDF

역동적 기하 환경에서 비례를 이용한 중학교 함수의 작도 (Construction of Elementary Functions through Proportions on the Dynamic Environment)

  • 류희찬;윤옥교
    • 대한수학교육학회지:학교수학
    • /
    • 제13권1호
    • /
    • pp.19-36
    • /
    • 2011
  • 본 연구는 중학교 학생들에게 닮은 삼각형의 대응변 사이에 성립하는 비례적 성질에 기초하여 함수를 작도할 수 있는 기회를 제공함으로써 대수적 함수와 그것의 기하학적 성질에 관한 학생들의 직관을 촉진시키기 위한 것이다. 또한, 학생들이 선택한 작도 방법에 관한 정당화의 과정을 강조함으로써 연역적 추론능력을 향상시키고자 하였다. 이 예비 연구의 결과로서 학생들이 함수를 작도하는 과정에서 나타나는 사고 과정의 특징과 교사의 역할에 관해 기술하였다.

  • PDF

GSP를 활용한 기하수업에서 수준별 학생의 논증기하와 해석기하의 연결에 관한 연구 (A Study on the Effects of Using GSP of Level Differentiated Students in Connecting Demonstrative Geometry and Analytic Geometry)

  • 도정철;손홍찬
    • 한국학교수학회논문집
    • /
    • 제18권4호
    • /
    • pp.411-429
    • /
    • 2015
  • 본 연구에서는 기하 문제해결에서 GSP의 활용이 수준별로 학생들에게 어떤 영향을 끼치는지에 대해 알아보았고, 특히 논증기하와 해석기하의 연결성에 어떤 영향을 주었는지에 관하여 살펴보았다. 구체적으로 살펴보면 상 수준의 학생은 기하 문제를 해결하기 위해 바로 형식적인 대수적 식을 사용하는 것을 선호하였고, 중 하 수준의 학생의 경우에는 GSP의 도움을 받아 대수식을 찾고자 하는 노력을 보였다. 특히 하수준의 경우에는 문제해결에는 실패하였지만 GSP의 도움을 받아 문제를 이해할 수 있는 경우가 많았다. 논증기하와 해석기하의 연결성과 관련하여 GSP의 역동적인 환경은 형식화된 해석기하적 표현의 의미를 한 눈에 파악할 수 있도록 도움을 주었고, 해석기하적 접근 방식을 사용한 풀이를 전개한 후 문제해결의 반성 단계에서 그 결과의 의미를 시각화하여 전체적으로 이해할 수 있도록 도움을 줄 수 있음을 알 수 있었다.

역동적 기하 환경에서 곡선 탐구를 통한 수학영재들의 불변량 활용에 관한 사례 연구 (A Case Study on Utilizing Invariants for Mathematically Gifted Students by Exploring Algebraic Curves in Dynamic Geometry Environments)

  • 최남광;류희찬
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제25권4호
    • /
    • pp.473-498
    • /
    • 2015
  • 본 연구의 목적은 고대 그리스 시대부터 수학자들이 복잡한 기구를 손수 제작하는 수고를 감내하면서 탐구하였던 대수곡선을 기구가 아닌 공학을 사용해 재현하고 생성하는 활동을 수행할 때, 수학영재들은 곡선의 자취를 어떻게 작도하며 불변량(Invariants)은 곡선의 작도와 생성에 어떤 영향을 주는지를 구체적으로 살펴보는데 있다. 특히, 역동적 기하 환경에서 불변량(Invariants)의 역할과 의미에 관한 실증적인 자료를 확보해보는 연구와 수학영재들이 새로운 곡선을 창출하는 과정에서 나타나는 불변량의 활용 유형을 세분해보는 연구를 시도해 봄으로써, 불변량에 대한 교육적 활용 방안을 제시하고 그 활용 범위의 확대 가능성을 확인하고자 하였다.

GSP의 쌍곡원반모형을 활용한 중학교 수학영재 학생들의 쌍곡평면 테셀레이션 구성과정에 관한 연구 (A Study on the Configuring Process of Secondary Mathematically Gifted about the Hyperbolic Plane Tessellation Using Dynamic Geometry Software)

  • 류희찬;이은주
    • 대한수학교육학회지:학교수학
    • /
    • 제15권4호
    • /
    • pp.957-973
    • /
    • 2013
  • 본 연구에서는 중학교 3학년 수학영재 학생들이 비유클리드 쌍곡원반모형에서 정삼각형 테셀레이션을 구성하는 활동을 하면서 나타나는 사고과정을 분석하였다. 역동적 기하환경인 poincare disk. gsp 파일에서 테셀레이션을 구성하기 위해 쌍곡평면에서 도형과 변환에 대한 학습을 하였다. 쌍곡선분의 특징을 탐구하고 도형인 정삼각형의 작도와 반전 변환을 학습 한 후 작도 과정을 반복한 후 쌍곡평면에서 테셀레이션이 가능하게 되는 조건을 탐구하는 과제를 해결하였다. 학생들은 이러한 과제를 해결하며 다양한 전략적 사고과정이 나타났고, 비유클리드 기하체계를 인지하는 경험을 할 수 있었다.

  • PDF

Cabri II 를 이용한 증명 교수학습 방법에 관한 연구

  • 류희찬;조완영
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제8권
    • /
    • pp.17-32
    • /
    • 1999
  • 본 논문의 목적은 Cabri II 를 이용하여 형식적이고 연역적인 증명수업 방법의 대안을 찾는 데 있다. 형식적인 증명을 하기 전에 탐구와 추측을 통한 발견과 그 결과에 대한 비형식적인 증명 활동을 강조한다. 역동적인 기하소프트웨어인 Cabri II 는 작도가 편리하고 다양한 예를 제공하여 추측과 탐구 그리고 그 결과의 확인을 위한 풍부한 환경을 제공할 수 있으며, 끌기 기능을 이용한 삼각형의 변화과정에서 관찰할 수 있는 불변의 성질이 형식적인 증명에 중요한 역할을 한다. 또한 도형에 기호를 붙이는 활동은 형식적인 증명을 어렵게 만드는 요인 중의 하나인 명제나 정리의 기호적 표현을 보다 자연스럽게 할 수 있게 해 준다. 그러나, 학생들이 증명은 더 이상 필요 없으며, 실험을 통한 확인만으로도 추측의 정당성을 보장받을 수 있다는 그릇된 ·인식을 심어줄 수도 있다. 따라서 모든 경우에 성립하는 지를 실험과 실측으로 확인할 수는 없다는 점을 강조하여 학생들에게 형식적인 증명의 중요성과 필요성을 인식시킬 필요가 있다. 본 연구에 대한 다음과 같은 후속연구가 필요하다. 첫째, Cabri II 를 이용한 증명 수업이 학생들의 증명 수행 능력 또는 증명에 대한 이해에 어떤 영향을 끼치는지 특히, van Hiele의 기하학습 수준이론에 어떻게 작용하는 지를 연구할 필요가 있다. 둘째, 본 연구에서 제시한 Cabri II 를 이용한 증명 교수학습 방법에 대한 구체적인 사례연구가 요구되며, 특히 탐구, 추측을 통한 비형식적인 중명에서 형식적 증명으로의 전이 과정에서 나타날 수 있는 학생들의 반응에 대한 조사연구가 필요하다.

  • PDF

우리나라 수학교육에서 공학 활용의 역사와 현황 (Trend and Prospect on Using Technology in Mathematics Education in Korea)

  • 손홍찬
    • 대한수학교육학회지:학교수학
    • /
    • 제13권3호
    • /
    • pp.525-542
    • /
    • 2011
  • 이 논문에서는 우리나라 학교수학의 교수 학습에서 가장 많이 사용되고 있는 공학적 도구들로 스프레드시트인 엑셀, 역동적 기하 소프트웨어인 GSP, Cabri, 그리고 CAS를 중심으로 이것들이 수학교육에서 활용되어온 역사와 특징 그리고 그것이 미친 영향을 살펴본다. 그리고 우리나라 수학교육에서 공학적 도구의 활용을 교육과정상의 변화, 교과서에서의 변화, 현직교사의 연수와 예비교사의 교육과정, 그리고 교실 등의 물리적 환경 등을 통하여 그 현황을 파악하고 미래의 수학교육에서 공학활용에 대한 방향을 제시한다.

  • PDF