• Title/Summary/Keyword: 억제인자

Search Result 1,336, Processing Time 0.03 seconds

Antioxidant, anti-inflammatory, and anti-pruritic effects of grape branch extract (포도가지 추출물의 산화방지, 항염증 및 항가려움 효과)

  • Cho, Byoung Ok;Yin, Hong Hua;Che, Denis Nchang;Kim, Sang Jun;Ryu, Cheol;Jang, Seon Il
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.590-596
    • /
    • 2016
  • This study was designed to investigate the antioxidant activities of the ethanol extracts (GBE) of grape branches (Campbell Early). The total polyphenol and flavonoid content of GBE was $201.42{\pm}4.16$ and $11.85{\pm}0.44mg\;GAE/g$, respectively. The antioxidant activity of GBE was measured using the ABTS and DPPH assays, and the $IC_{50}$ values were $45.60{\pm}0.09$ and $299.13{\pm}0.22$, respectively. GBE inhibited the production of pro-inflammatory mediators (NO, iNOS, $PGE_2$, COX-2, $IL-1{\beta}$, and IL-6) in lipopolysaccharide-stimulated RAW 264.7 macrophages in a dose-dependent manner. Moreover, GBE treatment significantly suppressed the production of $TNF-{\alpha}$ and IL-6 cytokines in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 human mast cells. Furthermore, the administration of GBE markedly inhibited the scratching behavior induced by the compound 48/80 in ICR mice. These results suggested that GBE has potential as a therapeutic agent against inflammation and itch-related skin diseases.

Anti-proliferative Effects of the Isothiocyanate Sulforaphane on the Growth of Human Cervical Carcinoma HeLa Cells (Sulforaphane에 의한 HeLa 인체자궁경부함세포의 증식 억제 기전 연구)

  • Park Soung Young;Bae Song-Ja;Choi Yung Hyun
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.397-405
    • /
    • 2005
  • Sulforaphane, an isothiocyanate derived from hydrolysis of glucoraphanin in broccoli and other cruciferous vegetables, was shown to induce phase II detoxification enzymes and inhibit chemically induced mammary tumors in rodents. Recently, sulforaphane is known to induce cell cycle arrest and apoptosis in human cancer cells, however its molecular mechanisms are poorly understood. In the present study, we demonstrated that sulforaphane acted to inhibit proliferation and induce morphological changes of human cervical carcinoma HeLa cells. Treatment of HeLa cells with $10{\mu}M\;or\;15{\mu}M$ sulforaphane resulted in significant G2/M cell cycle arrest as determined by flow cytometry. Moreover, $20{\mu}M$ sulforaphane significantly induced the population of sub-G1 cells (9.83 fold of control). This anti-proliferative effect of sulforaphane was accompanied by a marked inhibition of cyclin A and cyclin-dependent kinase (Cdk)4 protein and concomitant induction of Cdc2, Cdk inhibitor p16 and p21. However, sulforaphane did not affect the levels of cyelooxygenases and telomere-regulatory gene products. Although further studies are needed, the present work suggests that sulforaphane may be a potential chemoprevetive/ chemotherapeutic agent for the treatment of human cancer cells.

A Screen for Dual-protection Molecules from a Natural Product Library against Neuronal Cell Death and Microglial Cell Activation (신경세포 사멸과 미세아교세포활성화 억제 동시 가능 천연물질 탐색 연구)

  • Min, Ju-Sik;Lee, Dong-Seok
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.656-662
    • /
    • 2015
  • Natural products and natural product structures play a general and highly significant role in drug discovery and development process because it has various merits and potentials for new drug source that have extensive clinical experience, development time contraction, excellent stability and safety. In several neurological disorders, neuronal death and excessive activation of microglia (neuro-inflammation) are observed. A number of drug discovery-related neuronal cell death and neuro-inflammation was studied from natural products, respectively. However, until now, it has not been possible to study dual-protection molecules recorded in the Natural Product library. In the present study, using the natural product-derived library of the Institute for Korea Traditional Medical Industry, we investigated dual-protective molecules against glutamate (a classical excitatory neurotransmitter)-induced oxidative stress mediated neuronal cell death and LPS-induced excessive activated microglial cells (immune cells of the brain). Chrysophanol, extracted from Rheum palmatum, had dual-protective effects against both glutamate-induced neuronal cell death and LPS-induced NO production, triggering proinflammatory cytokines and microglia activation and resulting in neuroinflammation. Flow-cytometry analysis revealed that chrysophanol had a scavenger effect, scavenging glutamate- and LPS-induced reactive oxygen species (ROS) produced by neuronal and microglial cells, respectively. Based on the present study, chrysophanol may have an important protective role against neuronal cell death and neuroinflammation in the brain. The results may be helpful for studying drug development candidates for treating central nervous system disorders.

The Effect of Sodium Tungstate on the Aldehyde Oxidase and the Growth in the Primary Root of Maize (Zea mays) (옥수수 (Zea mays) 뿌리의 알데히드 산화효소와 생장에 미치는 텅스텐산 나트륨의 영향)

  • Oh, Young-Joo;Cho, Young-Jun;Park, Woong-June
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.990-995
    • /
    • 2007
  • We tested the effect of sodium tungstate, which disturbs the molybdenum cofactor formation, on the activities of aldehyde oxidase(AO) and the growth of maize(Zea mays) primary roots. As reported in other plants, sodium tungstate inhibited AO also in the maize root concentration-dependently. The inhibitory effect of sodium tungstate was observed only when the inhibitor was applied to the living plants. Application of tungstate to the extracted protein did not show any effect. Western analysis revealed slightly decreased level of AO protein in the presence of tungstate, indicating a positive feedback of gene regulation by the product. We also tested the effects of tungstate on the root growth. The elongation of primary root and the development of lateral roots, which are sensitive to the absolute level of auxin, were decreased in the presence of sodium tungstate. However, the gravitropic curvature of the primary root, which is dependent on the relative amount of auxin at both sides, was unaffected. These data suggested the decrease of auxin biosynthesis by the application of tungstate. However, the level of free IAA was unaffected by tungstate application. We discuss the possible explanations for the observed results.

Triglyceride Control Effect of Agrimonia eupatoria L. in Oleic Acid Induced NAFLD-HepG2 Model (올레산 유도 비알콜성 지방간세포에서 용아초의 중성지방 조절효과)

  • Sohn, Eun-Hwa;Kim, Taeseong;Jeong, Yong Joon;Han, Hyo-Sang;Lea, Youngsung;Cho, Young Mi;Kang, Se Chan
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.635-640
    • /
    • 2015
  • Nonalcoholic fatty liver disease (NAFLD) is a kind of liver inflammation caused by an accumulation of fat in the liver. Patients with NAFLD have an increased risk to develop liver fibrosis, which leads to cirrhosis. To investigate hepatoprotective effects of Agrimonia eupatoria L (A. eupatoria), oleic acid-induced NAFLD in HepG2 cells was used and A. eupatoria was fractionated with ethanol (EtOH), n-hexane, dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (BuOH), and H2O. Cells treated with the EtOAc fraction showed the highest lipid accumulation inhibiting effect. A. eupatoria also suppressed triglyceride accumulation and inhibited expression of lipid marker gene, such as a peroxisome proliferator activated receptor γ (PPAR-γ). Moreover, another marker, mRNA expression level of peroxisome proliferator activated receptor α (PPAR-α) was significantly increased by in a dose-dependent manner. These results suggest that A. eupatoria is a potent agent for the treatment of NAFLD.

The Anti-Obesity Effect of Smilax china Extract (토복령 추출물의 항비만 활성)

  • Park, Jung Ae;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.354-360
    • /
    • 2014
  • In this study, the anti-obesity activity of Smilax china methanol extract (SCME) was evaluated using a pancreatic lipase enzyme inhibition assay, and a cell culture model system. Results indicated that, SCME effectively inhibited pancreatic lipase enzyme activity in a dose-dependent manner. Furthermore, SCME significantly suppressed insulin, dexamethasone, 3-isobutyl-1-methylxanthine-induced adipocyte differentiation, lipid accumulation, and triglyceride contents on 3T3-L1 preadipocytes, in a dose-dependent manner. The anti-adipogenic effect was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBP) ${\alpha}$, $C/EBP{\beta}$, and the peroxisome proliferator-activated receptor ${\gamma}$ gene and protein expressions. Moreover, SCME triggered lipolysis effects dose-dependently on adipocyte. Taken together, these results provide an important new insight into SCME, indicating that it possesses anti-obesity activity through pancreatic lipase inhibition, anti-adipogenic and lipolysis effects. SCME may therefore be utilized as a promising source in the field of nutraceuticals. The identification of active compounds that confer the anti-obesity activities of SCME may be a logical next step.

Anti-Oxidative and Anti-Obesity Effects of Amomum Cardamomum L. Extract (백두구 추출물의 항산화 및 항비만 효과)

  • Park, Jung Ae;Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.249-257
    • /
    • 2014
  • In this study, the anti-oxidative and anti-obesity activities of Amomum cardamomum L. methanol extract (ACME) were evaluated using DPPH radical scavenging activity assay, pancreatic lipase enzyme inhibition assay, and the cell culture model system. ACME exhibited DPPH radical scavenging activities dose-dependently, with $IC_{50}$ of DPPH radical scavenging activities of ACME being $25.15{\mu}g/ml$. Furthermore, ACME effectively suppressed pancreatic lipase enzyme activity dose-dependently. ACME also significantly suppressed adipocyte differentiation, lipid accumulation, triglyceride (TG) contents, and triggered lipolysis activity on 3T3-L1 preadipocytes in a dose-dependent manner, without cytotoxicity. Their anti-obesity effect was modulated by the cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$ and the peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) gene and protein expressions. Taken together, these results provide an important new insight that A. cardamomum L. possesses anti-oxidative and anti-obesity activities such as pancreatic lipase inhibition, anti-adipogenic, and lipolysis effects. There is therefore potential for its use as a promising component in the field of nutraceuticals and the identification of the active compounds that confer the anti-oxidative and anti-obesity activities of ACME might be an appropriate next step.

Molecular Mechanism of the Antiproliferative Effect by Ginseng Panaxynol on a Human Malignant Melanoma Cell Line, SK-MEL-1 (인체 흑색종 세포주 SK-MEL-1에 대한 인삼 panaxynol의 항증식 효과 기전)

  • Cho Hongkeun;Yu Su-Jin;Roh Joo Young;;Hwang Woo-Ik;Sohn Jeongwon
    • Journal of Ginseng Research
    • /
    • v.23 no.3 s.55
    • /
    • pp.190-197
    • /
    • 1999
  • In this study, the molecular mechanism of the growth inhibitory effect of panaxynol was investigated in a human malignant melanoma cell line, SK-MEL-l. In the cell cycle analysis, panaxynol arrested cell cycle progression of SK-MEL-I at the G1 phase. Immunoblot analysis demonstrated that panaxynol increased $p21^{WAF1}$ and decreased cdc2 expression. Protein levels of pl6, p27, E2F-1, Rb, and p53 were not changed. Thus, the changes in expression levels of $p21^{WAF1}$ and cdc2 apparently mediate the cell cycle arrest caused by panaxynol. In addition, cycloheximide (CHX) partially reversed the growth inhibition by panaxynol, which suggested that new protein synthesis was required. On the other hand, LLnL, a proteasome inhibitor, increased antiproliferative effect of panaxynol. This may be due to stabilization of the protein(s) responsible for the growth inhibition such as $p21^{WAF1}$. In summary, these results demonstrate that panaxynol inhibits proliferation of SK-MEL-I by inducing cell cycle arrest at the G1 phase and the inhibitory effect is mediated by the increased level of $p21^{WAF1}$ as well as decreased cdc2 expression.

  • PDF

Effects of Hizikia fusiforme Extracts on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (톳 분획물이 3T3-L1 지방전구세포의 분화 및 지방생성의 억제에 미치는 영향)

  • Choi, Eun Ok;Kim, Hyang Suk;Han, Min Ho;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Jinah;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1399-1406
    • /
    • 2012
  • The present study was conducted to evaluate the effects of various extracts of Hizikia fusiforme on the anti-obesity effects in 3T3-L1 preadipocytes. We used H. fusiforme extracts from ethanol (EEHF), dichloromethane (CFHF), ethyl acetate (EAFHF), butanol (BFHF), and water (WFHF). Treatment with these extracts significantly suppressed terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner as confirmed by a decrease in lipid droplet content through Oil Red O staining; this effect was higher in WFHF than in other extracts. The concentrations of cellular triglyceride were also reduced in 3T3-L1 cells by exposure with these extracts, especially when compared with the controls. Treatment with 200 ${\mu}g/ml$ of WFHF and CFHF caused approximately 42.6% and 23.7% reduction, respectively. In addition, the extracts of H. fusiforme significantly reduced the expression levels of key pro-adipogenic transcription factors, including peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer binding proteins ${\alpha}$ (C/$EBP{\alpha}$) and C/$EBP{\beta}$ as compared with controls. Accordingly, our data indicated that WFHF has a preeminent effect on inhibition of adipocyte differentiation among various extracts, and H. fusiforme extracts may be an ideal candidate for obesity relief.

Suppression of Human GD3 Synthase (hST8Sia I) Expression Induced by Retinoic Acid in Human Melanoma SK-MEL-2 Cells (흑색종세포주 SK-MEL-2에서 레티노이드에 의한 GD3합성효소(hST8Sia I)의 발현억제)

  • Kwon, Haw-Young;Kang, Nam-Young;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.655-661
    • /
    • 2010
  • To elucidate the mechanism underlying the suppressive regulation of hST8Sia I expression in retinoic acid (RA)-induced SK-MEL-2 cells, we characterized the promoter region of the hST8Sia I gene. Functional analysis of the 5‘-flanking region of the hST8Sia I gene by the transient expression method showed that the -1146 to -646 region, which contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1 and NF-kB, functions as the RA-repressive promoter in SK-MEL-2 cells. Site-directed mutagenesis and ChIP analyses indicated that the NF-kB binding site at -731 to -722 is crucial for the RA-induced repression of hST8Sia I in SK-MEL-2 cells. In addition, the transcriptional activity of hST8Sia I suppressed by RA in SK-MEL-2 cells was strongly inhibited by extracellular signal-regulated protein kinase (ERK) inhibitor U0126 and protein kinase C (PKC) inhibitor GO6976, as determined by RT-PCR and luciferase assay of hST8Sia I promoter containing the -1146 to -646 regions. These results suggest that RA markedly modulates transcriptional regulation of hST8Sia I gene expression through the PKC/ERK signal pathway in SK-MEL-2 cells.