Browse > Article
http://dx.doi.org/10.5352/JLS.2007.17.7.990

The Effect of Sodium Tungstate on the Aldehyde Oxidase and the Growth in the Primary Root of Maize (Zea mays)  

Oh, Young-Joo (Department of Molecular Biology, BK21 Graduate program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University)
Cho, Young-Jun (Department of Molecular Biology, BK21 Graduate program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University)
Park, Woong-June (Department of Molecular Biology, BK21 Graduate program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University)
Publication Information
Journal of Life Science / v.17, no.7, 2007 , pp. 990-995 More about this Journal
Abstract
We tested the effect of sodium tungstate, which disturbs the molybdenum cofactor formation, on the activities of aldehyde oxidase(AO) and the growth of maize(Zea mays) primary roots. As reported in other plants, sodium tungstate inhibited AO also in the maize root concentration-dependently. The inhibitory effect of sodium tungstate was observed only when the inhibitor was applied to the living plants. Application of tungstate to the extracted protein did not show any effect. Western analysis revealed slightly decreased level of AO protein in the presence of tungstate, indicating a positive feedback of gene regulation by the product. We also tested the effects of tungstate on the root growth. The elongation of primary root and the development of lateral roots, which are sensitive to the absolute level of auxin, were decreased in the presence of sodium tungstate. However, the gravitropic curvature of the primary root, which is dependent on the relative amount of auxin at both sides, was unaffected. These data suggested the decrease of auxin biosynthesis by the application of tungstate. However, the level of free IAA was unaffected by tungstate application. We discuss the possible explanations for the observed results.
Keywords
Sodium tungstate; aldehyde oxidase; root; maize (Zea mays);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Badwey, J. A., J. M, Robinson, M. J. Karnovsky and M. L. Karnovsky. 1981. Superoxide production by an unusual aldehyde oxidase in guinea pig granulocyte. Characterization and cytochemical localization. J. Biol. Chem. 256, 3479-3486.
2 van der Zaal, B. J., L. W. Neuteboom, J. E. Pinas, A. N. Chardonnens, H. Schat, J. A. Verkleij and P. J. Hooykaas. 1999. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Mol. Biol. 39, 273-287.   DOI   ScienceOn
3 Yesbergenova, Z., G. Yang, E. Oron, D. Soffer, R. Fluhr and M. Sagi. 2005. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J. 42, 862-876.   DOI   ScienceOn
4 Zdnek-Zastocka, E., R. T. Omarov, T. Koshiba and H S. Lips. 2004. Activity and protein level of AO isoforms in pea plants (Pisum saiioum L.) during vegetative development and in response to stress conditions. J. Exp. Bot. 55, 1361-1369.   DOI   ScienceOn
5 Mendel, R. R. and F. Bittner. 2006. Cell biology of molybdenum. Biochimica. Biophysica. Acta. 1763, 621-635.   DOI   ScienceOn
6 Normanly, J. 1997. Auxin Metabolism. Physiol. Plant 100, 431-442.   DOI   ScienceOn
7 Omarov, R. T., S. Akaba, T. Koshiba and S. H. Lips. 1999. Aldehyde oxidase in roots, leaves and seeds of barley (Hordeum vulgare L.). J. Exp. Bot. 50, 63-69.   DOI   ScienceOn
8 Park, W. J., V. Kriechbaumer, A. Mueller, M. Piotrowski, R. B. Meeley, A. Gierl, E. Glawischnig. 2003. The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiol. 133, 794-802.   DOI   ScienceOn
9 Rajagopalan, K. V. and P. Handler. 1966. Aldehyde oxidase. Methods Enzymol. 9, 364-368.   DOI
10 Rodriguez-Trelles, F., R. Tarrio and F. J. Ayala. 2003. Convergence neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. Proc. Natl. Acad. Sci. USA 100, 13413-13417.   DOI   ScienceOn
11 Sekimoto, H., M. Seo, N. Dohmae, K. Takio, Y. Kamiya and T. Koshiba. 1997. Cloning and molecular characterization of plant aldehyde oxidase. J. Biol. Chem. 272, 15280-15285.   DOI   ScienceOn
12 Seo, M. and T. Koshiba. 2002. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7, 41-48.   DOI   ScienceOn
13 Seo, M., A. J. M. Peeters, H. Koiwai, T. Oritani, A. Marion-Poll, J. A. Zeevart, M. Koornneef, Y. Kamiya and T. Koshiba. 2000. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl. Acad. Sci. USA 97, 12908-12913.   DOI   ScienceOn
14 Bittner, B., M. Oreb and R. R. Mendel (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana, J. Biol. Chem. 276. 40381-40384.   DOI   ScienceOn
15 Shaw, S. and E. Jayatilleke. 1990. The role of aldehyde oxidase in ethanol-induced hepatic lipid peroxidation in the rat. Biochem. J. 268, 579-583.   DOI
16 Akaba, S., M. Seo, N. Dohmae, K. Takio, H. Sekimoto, Y. Kamiya, N. Furuya, T. Komano and T. Koshiba, 1999. Production of homo- and hetero-dimeric isozymes from two aldehyde oxidase genes of Arabidopsis thaliana. J. Biochem. 126, 395-401.   DOI
17 Barker-Bridgers, M., D. M. Ribnicky, J. D. Cohen and A. M. Jones. 1998. Red-light-regulated growth: Changes in the abundance of indoleacetic acid in the maize (Zea mays L.) mesocotyl. Planta 204, 207-211.   DOI   ScienceOn
18 Bower, P. J., H. M. Brown and W. K. Purves. 1978. Cucumber seedling indoleacetaldehyde oxidase. Plant Physiol. 61, 107-110.   DOI   ScienceOn
19 Hetz, W, F. Hochholdinger, M. Schwall and G. Feix. 1996. Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J. 10, 845-857.   DOI   ScienceOn
20 Jiang, X. Y., R. T. Omarov, S. Z. Yesbergenova and M. Sagi. 2004. The effect of molybdate and tungstate in the growth medium on abscisic acid content and the Mo-hydroxylases activities in barley (Hordeum vulgare L). Plant Sci. 167, 297-304.   DOI   ScienceOn
21 Koshiba, T., E, Saito, N. Ono, N. Yamamoto and M. Sato. 1996. Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol. 110, 781-789.   DOI
22 Kim, Y. J., Y. J. Oh and W. J. Park. 2006. HPLC-based quantification of indole-3-acetic acid in the primary root tip of maize. J. Nano & Bio Tech. 3, 40-45.