Browse > Article
http://dx.doi.org/10.5352/JLS.2005.15.3.397

Anti-proliferative Effects of the Isothiocyanate Sulforaphane on the Growth of Human Cervical Carcinoma HeLa Cells  

Park Soung Young (Department of Food and Nutrition, Silla University and Marine Biotechnology Center for Bio-Functional Material Industries)
Bae Song-Ja (Department of Food and Nutrition, Silla University and Marine Biotechnology Center for Bio-Functional Material Industries)
Choi Yung Hyun (Department of Biochemistry, Dongeui University Oriental Medicine and Department of Biomaterial Control, Dongeui University Graduate School)
Publication Information
Journal of Life Science / v.15, no.3, 2005 , pp. 397-405 More about this Journal
Abstract
Sulforaphane, an isothiocyanate derived from hydrolysis of glucoraphanin in broccoli and other cruciferous vegetables, was shown to induce phase II detoxification enzymes and inhibit chemically induced mammary tumors in rodents. Recently, sulforaphane is known to induce cell cycle arrest and apoptosis in human cancer cells, however its molecular mechanisms are poorly understood. In the present study, we demonstrated that sulforaphane acted to inhibit proliferation and induce morphological changes of human cervical carcinoma HeLa cells. Treatment of HeLa cells with $10{\mu}M\;or\;15{\mu}M$ sulforaphane resulted in significant G2/M cell cycle arrest as determined by flow cytometry. Moreover, $20{\mu}M$ sulforaphane significantly induced the population of sub-G1 cells (9.83 fold of control). This anti-proliferative effect of sulforaphane was accompanied by a marked inhibition of cyclin A and cyclin-dependent kinase (Cdk)4 protein and concomitant induction of Cdc2, Cdk inhibitor p16 and p21. However, sulforaphane did not affect the levels of cyelooxygenases and telomere-regulatory gene products. Although further studies are needed, the present work suggests that sulforaphane may be a potential chemoprevetive/ chemotherapeutic agent for the treatment of human cancer cells.
Keywords
sulforaphane; HeLa cells; cell cyele;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shang, J., Vanda, S., Bao, Y., Howie, A F., Beckett, G. J. and Gary, W. 2003. Synergy between sulforaphane and selenium in the induction of thioredoxin reductase 1 requires both transcriptional and translational modulation. Carcinogenesis 24, 497-503   DOI   ScienceOn
2 Sherr, C. J. 2000. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 60, 3689-3695
3 Singh, S. V., Herman-Antosiewicz, A, Singh, A. V., Lew, K. J., Srivastava, S. K., Kamath, R., Brown, K. D., Zhan& L and Baskaran, R. 2004. Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J. BioI. Chem. 279, 25813-25822   DOI   ScienceOn
4 Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K and Lee, S. S. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemica1s: down-regulation of COX-2 and iNCS through suppression of NF-$\kappa$B activation. Mutat. Res. 480-481, 243-268
5 Wang, I., Liu, D., Ahmed, T., Chung, F. I., Conaway, H and Chiao, J. W. 2004. Targenting cell cycle machinery as a molecular mechanism of sulforaphane in prostate cancer prevention. Int. J. Oncol. 24, 187-192
6 Weinberg, R. A 1995. The retinoblastoma protein and cell cycle control. Cell 81, 323-330   DOI   ScienceOn
7 Xiong, Y., Hannon, G. J., Zhang, H., Casso, D., Kobayashi, R and Beach, D. 1993. p21 is a universal inhibitor of cyclin kinases. Nature 366, 701-704   DOI   ScienceOn
8 Zeng Y. X and El-Deiry, W. S. 1996. Regulation of p21WAF1/ClPl expression by p53-independent pathways. Oncogene 12, 1557-1564
9 Zhang, Y., Li, J. and Tan& J. 2005. Cancer-preventive isothiocyanates: dichotomous modulators of oxidative stress. Free Radic. BioI. Med. 38, 70-77   DOI   ScienceOn
10 Jackson, S. J. and Singletary, K. W. 2004. Sulforaphane inhibits human MCF-7 mammary cancer cell mitotic progression and tubulin polymerization. J. Nutr. 134, 2229-2236
11 Krek, W. and Nigg, E. A. 1991. Differential phosphorylation of vertebrate p34cdc2 kinase at the Gl/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. EMBO. J. 10, 305-316
12 Mathieu, N., Pirzio, L., Freulet-Marriere, M. A, Desmaze, C and Sabatier, J. 2004. Telomeres and chromosomal instability. Cell Mol. Life Sci. 61, 641-656   DOI   ScienceOn
13 Petri, N., Tannergren, C., Holst, B., Mellon, F. A., Bao, Y., Plumb, G. W., Bacon, J., O'leary, K. A, Kroon, P. A., Knutson, L., Forsell, P., Eriksson, T., Lennernas, H. and Williamson, G. 2003. Absorption/Metabolism of Sulforaphane and Quercetin and regulation of phase 2 enzymes, in human jejunum in vivo. Drug Metab. Dispos. 31, 805-813   DOI   ScienceOn
14 Misiewicz, I., Skupinska, K. and Kasprzycka-Guttman, T. 2003. Sulforaphane and 2-oxohexyl isothiocyanate induce cell growth arrest and apoptosis in L-1210 leukemia and ME-18 melanoma cells. Oncol. Rep. 10, 2045-2050
15 Ohsumi, K., Katagiri, C. and Kishimoto, T. 1993. Chromosome condensation in Xenopus mitotic extracts without histone H1. Science 262, 2033-2035   DOI
16 Parnaud, G., Li, P., Cassar, G., Rouimi, P., Tulliez, J., Combaret, L and Gamet-Payrastre, J. 2004. Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr. Cancer 48, 198-206
17 Pham, N. A, Jacobberger, J. W., Schimmer, A. D., Cao, P., Gronda, M. and Hedley, D. W. 2004. The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol. Cancer Ther. 3, 1239-1248
18 Choi, Y. H., Lee, W. H., Park, K. Y. and Zhang, J. 2000. p53-independent induction of p21 (W AF1/CIP1), reduction of eyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn. J. Cancer Res. 91, 164-173   DOI
19 Datto, M. B., Yu, Y and Wang, X. F. 1995. Functional analysis of the transforming growth factor 13 responsive elements in the WAF1/Cip1/p21 promoter. J. BioI. Chem. 270, 28623-28628   DOI
20 Denis, G., Martin, G., Dominique, B., Albert, M., Yves, T and Richard, B. 2004. Induction of medulloblastoma cell apoptosis by sulforaphane, a dietary anticarcinogen from Brassica vegetable. Cancer Lett. 203, 35-43   DOI   ScienceOn
21 Harper, J. W. 1997. eyelin dependent kinase inhibitors. Cencer Surv. 29, 91-107
22 Girard, F., Strausfeld, D., Fernandez, A and Lamb, N. J. 1991. Cyctin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67, 1169-1179   DOI   ScienceOn
23 Greenwood, M. J. and Landsdorp, P. M. 2003. Telomeres, telomerase, and hematopoietic stem cell biology. Arch. Med. Res. 34, 489-495   DOI   ScienceOn
24 Guadagno, T. M., Ohtsubo, M., Roberts, J. M. and Assoian, R. K. 1993. A link between eyctin A expression and adhesiondependent cell cycle progression. Science 262, 1572-1575   DOI
25 Heiss, E., Herhaus, C., Klimo, K., Bartsch, H and Gerhauser, C. 2001. Nuclear factor $\kappa$B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J. Biol. Chem. 276, 32008-32015   DOI   ScienceOn
26 Homayoun, V. and Sam, B. 1996. From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: The telomere loss/DNA damage model of cell aging. Exp. Gerontol. 31, 295-301   DOI   ScienceOn
27 Li, Y., Jenkins, C. W., Nichols, M. A and Xiong, Y. 1994. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9, 2261-2268
28 Ajita, V. S., Dong, X., Karen, J. L., Rajiv, D and Shivendra, V. S. 2004. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth PC-3 xenografts in vivo. Carcinogenesis 25, 83-90   DOI   ScienceOn
29 Chiao, J. W., Chung, F. L., Kancherla, R., Ahmed, T., Mittelman, A and Conaway, C. C. 2002. Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int. J. Oncol. 20, 631-636
30 Elledge, S. J. and Harper, J. W. 1994. Cdk inhibitors: on the threshold of checkpoints and development. Curr. Opin. Cell BioI. 6, 847-852   DOI   ScienceOn
31 Jackson, S. J. and Singletary, K. W. 2004. Sulforaphane: a naturally occurring mammary carcinoma mitotic inhibitor, which disrupts tubulin polymerization. Carcinogenesis 25, 219-227