• Title/Summary/Keyword: 압하

Search Result 7,242, Processing Time 0.033 seconds

Numerical Analysis of Phase Behavior and Flow Properties in an Injection Tubing during Gas Phase CO2 Injection : Application of Demonstration-scale Offshore CO2 Storage Project in the Pohang Basin, Korea (기체상태의 CO2 주입시 주입관내 상변화 및 유동 특성의 수치해석적 연구 : 포항분지 해상 중소규모 CO2 지중저장 사업에 적용)

  • Jung, Woodong;Sung, Wonmo;Han, Jeong-Min;Song, Youngsoo;Wang, Jihoon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.10-18
    • /
    • 2021
  • CO2 storage technology in an aquifer is one of the most effective way to decrease global warming due to a high storage capacity and economics. A demonstration-scale offshore CO2 storage project was performed in a geological deep aquifer in the Pohang Basin, Korea for a technological development of large-scale CO2 storage. A challenging issue in the early design stage of the project was to establish the proper injectivity during CO2 injection. To solve this issue, injection conditions were calculated by calculating injection rate, pressure, temperature, CO2 phase change, and thermodynamic properties. For this study, we simulated and numerically analyzed CO2 phase change from gas to supercritical phase and flow behavior in transport piping and injection tubing using OLGA program. Our results provide the injectivity conditions of CO2 injection system combined with a bottomhole pressure of an aquifer.

Recent Research Trends of Supercapacitors for Energy Storage Systems (에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향)

  • Son, MyungSuk;Ryu, JunHyung
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.277-290
    • /
    • 2021
  • A supercapacitor, also called an ultracapacitor or an electrochemical capacitor, stores electrochemical energy by the adsorption/desorption of electrolytic ions or a fast and reversible redox reaction at the electrode surface, which is distinct from the chemical reaction of a battery. A supercapacitor features high specific power, high capacitance, almost infinite cyclability (~ 100,000 cycle), short charging time, good stability, low maintenance cost, and fast frequency response. Supercapacitors have been used in electronic devices to meet the requirements of rapid charging/discharging, such as for memory back-up, and uninterruptible power supply (UPS). Also, their use is being extended to transportation and large industry applications that require high power/energy density, such as for electric vehicles and power quality systems of smart grids. In power generation using intermittent power sources such as solar and wind, a supercapacitor is configured in the energy storage system together with a battery to compensate for the relatively slow charging/discharging time of the battery, to contribute to extending the lifecycle of the battery, and to improve the system power quality. This article provides a concise overview of the principles, mechanisms, and classification of energy storage of supercapacitors in accordance with the electrode materials. Also, it provides a review of the status of recent research and patent, product, and market trends in supercapacitor technology. There are many challenges to be solved to meet industrial demands such as for high voltage module technologies, high efficiency charging, safety, performance improvement, and competitive prices.

High Voltage β-Ga2O3 Power Metal-Oxide-Semiconductor Field-Effect Transistors (고전압 β-산화갈륨(β-Ga2O3) 전력 MOSFETs)

  • Mun, Jae-Kyoung;Cho, Kyujun;Chang, Woojin;Lee, Hyungseok;Bae, Sungbum;Kim, Jeongjin;Sung, Hokun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.201-206
    • /
    • 2019
  • This report constitutes the first demonstration in Korea of single-crystal lateral gallium oxide ($Ga_2O_3$) as a metal-oxide-semiconductor field-effect-transistor (MOSFET), with a breakdown voltage in excess of 480 V. A Si-doped channel layer was grown on a Fe-doped semi-insulating ${\beta}-Ga_2O_3$ (010) substrate by molecular beam epitaxy. The single-crystal substrate was grown by the edge-defined film-fed growth method and wafered to a size of $10{\times}15mm^2$. Although we fabricated several types of power devices using the same process, we only report the characterization of a finger-type MOSFET with a gate length ($L_g$) of $2{\mu}m$ and a gate-drain spacing ($L_{gd}$) of $5{\mu}m$. The MOSFET showed a favorable drain current modulation according to the gate voltage swing. A complete drain current pinch-off feature was also obtained for $V_{gs}<-6V$, and the three-terminal off-state breakdown voltage was over 482 V in a $L_{gd}=5{\mu}m$ device measured in Fluorinert ambient at $V_{gs}=-10V$. A low drain leakage current of 4.7 nA at the off-state led to a high on/off drain current ratio of approximately $5.3{\times}10^5$. These device characteristics indicate the promising potential of $Ga_2O_3$-based electrical devices for next-generation high-power device applications, such as electrical autonomous vehicles, railroads, photovoltaics, renewable energy, and industry.

Study on the Crack and Thermal Degradation of GFRP for UPE Gelcoat Coated Underground Pipes Under the High Temperature Water-Immersion Environment (고온 수침 환경에서 UPE 겔코트 코팅된 지중 매설 파이프용 GFRP의 열화 및 크랙 발생 특성에 관한 연구)

  • Kim, Daehoon;Eom, Jaewon;Ko, Youngjong;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2018
  • Glass fiber reinforced polyester (GFRP) composites are widely used as structural materials in harsh environment such as underground pipes, tanks and boat hulls, which requires long-term water resistance. Especially, these materials might be damaged due to delamination between gelcoat and composites through an osmotic process when they are immersed in water. In this study, GFRP laminates were prepared by surface treatment of UPE (unsaturated polyester) gelcoat by vacuum infusion process to improve the durability of composite materials used in underground pipes. The composite surface coated with gelcoat was examined for surface defects, cracking, and hardness change characteristics in water-immersion environments (different temperatures of $60^{\circ}C$, $75^{\circ}C$, and $85^{\circ}C$). The penetration depth of cracks was investigated by micro CT imaging according to water immersion temperature. It was confirmed that cracks developed into the composites material at $75^{\circ}C$ and $85^{\circ}C$ causing loss of durability of the materials. The point at which the initial crack initiated was defined as the failure time and the life expectancy at $23^{\circ}C$ was measured using the Arrhenius equation. The results from this study is expected to be applied to reliability evaluation of various industrial fields where gelcoat is applied such as civil engineering, construction, and marine industry.

Comparative Analysis of Annual Tropospheric Delay by Season and Weather (계절과 날씨에 따른 연간 대류권 지연오차량 변화)

  • Lim, Soo-Hyeon;Kim, Ji-Won;Park, Jeong-Eun;Bae, Tae-Suk;Hong, Sungwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In this study, we estimated the tropospheric delay of GNSS (Global Navigation Satellite System) signals during passing through the atmosphere in relation to weather and seasonal factors. For this purpose, we chose four CORS (Continuously Operating Reference Station) stations from inland (CCHJ and PYCH) and on the coast (GEOM and CHJU). A total of 48 days for each station (one set of data for each week) were downloaded from the NGII (National Geographic Information Institute) and processed it using the scientific GNSS software. The average tropospheric delays in winter are less than 2,400 mm, which is about 200 mm less than those in summer. The estimated tropospheric delay shows a similar pattern from all stations except the absolute bias in magnitude, while a large delay was observed for the station located on the coast. In addition, the delay during the day was relatively stable in winter, and the average tropospheric delay was strongly related to the orthometric height. The inland stations have tropospheric delays by the precipitation rather than humidity due to dry weather and difference in temperature. On the contrary, it was primarily caused by the humidity on the sea. The correlation between temperature and water vapor pressure is 0.9 or larger for all stations, and the tropospheric delay showed a high linear relationship with temperature. It is necessary to analyze the GNSS data with higher temporal resolution (e.g. all RINEX data of the year) to improve the stability and reliability of the correlation results.

Reuse and Concentration of Sewage by Forward Osmosis Using Fertilizer as Draw Solution (비료 유도용액의 정삼투를 이용한 하수의 재이용 및 농축)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.122-131
    • /
    • 2019
  • In order to reuse and concentrate the sewage, a forward osmosis using fertilizer as draw solution was applied. Sewage-1, which is the supernatant after settling for 30 minutes for the primary settling basin influent, and Sewage-2, which is the supernatant after settling for 30 minutes for the effluent, and Sewage-3, which is the filtrate filtered through a $1{\mu}m$ cartridge filter for the effluent were tested. Eight draw solutions of $NH_4H_2PO_4$, KCl, $KNO_3$, $NH_4Cl$, $(NH_4)_2HPO_4$, $NH_4NO_3$, $NH_4HCO_3$, and $KHCO_3$ were used in consideration of osmotic pressure, solubility and pH. In the case of Sewage-3, the permeate flux was almost similar to that of the discharge water of the sewage treatment plant, and was larger than that of Sewage-1 and Sewage-2. $NH_4H_2PO_4$ was the smallest, and $NH_4NO_3$ was the largest in the specific reverse solute flux. $NH_4H_2PO_4$ was found to be most useful for the reuse and concentration of sewage because it contains nitrogen and phosphorus, which are the major components of fertilizer, as well as low specific reverse solute flux. When $NH_4H_2PO_4$ was used as the draw solution, the concentration factor after 24 hours for Sewage-3 was 1.72.

Comparison of Intraocular Pressure Values of Normotensive and Glaucomatous Rats Using Two Types of Tonometers (두 종류의 안압계로 측정한 정상안압과 녹내장 쥐의 안압 값 비교)

  • Choy, Yoon-Jung;Choi, Jee-Hyun
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.589-596
    • /
    • 2018
  • Purpose : We compared intraocular pressure (IOP) values measured by two types of tonometers in condition of normotensive and glaucomatous rat model. We tried to determine which of tonometer can more easily and accurately measure the IOP of animal model. Methods : Glaucomatous eyes were induced by intracameral injections of hyaluronic acid in right eyes of six-week-old male Spargue-Dawley (SD) rats. Normotensive contralateral eyes were left eyes of the SD rats. IOP was measured using a rebound tonometer (Tonolab) and a immersive tonometer ($Tonopen^{(R)}$ XL) about 3:00 pm. Results : The mean IOP values of normotensive control eyes were $10.80{\pm}1.03mmHg$ by Tonopen, and $15.10{\pm}0.73mmHg$ by Tonolab. They were statistically insignificant (p = .1). The mean IOP values of glaucomatous experimental eyes were $30.20{\pm}2.67mmHg$ by Tonopen, and $37.90{\pm}2.73mmHg$ by Tonolab. They were statistically insignificant (p = .95). High IOP values of glaucomatous eyes by two types of tonometers had strong positive correlation each other (r = .904, p < .01). Conclusion : This is the first study to compare IOP values using two types of tonometers between normotensive and glaucomatous model made by intracameral injection of hyaluronic acid. Tonopen should be used carefully when the IOP is within normal range, and both Tonopen and Tonolab can be used reliably when the IOP is high.

Remote Monitoring Panel and Control System for Chemical, Biological and Radiological Facilities (화생방 방호시설을 위한 원격감시 패널 및 제어시스템)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.464-469
    • /
    • 2019
  • A remote monitoring panel and control system was developed to control various valves and access control chambers, including gas shutoff valves used in CBR(Chemical, Biological and Radiological) facilities. The remote monitoring panel consisted of a main panel installed in the NBC (Nuclear, Biological and Chemical) control room and auxiliary panel installed in the clean room, and the size was divided into pure control and control including CCTV. This system can be monitored and controlled remotely according to the situation where an explosion door and gas barrier door can occur during war and during normal times. This system is divided into normal mode and war mode. In particular, it periodically senses the operation status of various valves, sensors, and filters in the CBR facilities to determine if each apparatus and equipment is in normal operation, and remotely alerts situation workers when repair or replacement is necessary. Damage due to the abnormal operation of each device in the situation can be prevented. This enables control of the blower, supply and exhaust damper, emergency generator, and coolant pump according to the state of shutoff valve and positive pressure valve in the occurrence of NBC, and prevents damage caused by abrupt inflow of conventional weapons and nuclear explosions.

Characteristics of particulate matter collection efficiency and ozone emission rate of an electrostatic precipitator by thickness of high-voltage electrode and distance of collection plates (고전압 전극 두께와 집진판 간격에 따른 전기집진기의 미세먼지 집진효율 및 오존발생 특성)

  • Lee, Jae-In;Woo, Sang-Hee;Kim, Jong Bum;Lee, Seung-Bok;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.171-180
    • /
    • 2018
  • To optimize the shape of the electrostatic precipitator for the removal of particulate matter in subway environments, the wind-tunnel experiments were carried out to characterize collection efficiency and ozone emission rate. As a standardized parameter, power consumption divided by the square of flow velocity, was increased, the $PM_{10}$ collection efficiency increased. If the standardized parameter is higher than 1.0 due to high power consumption or low flow velocity, increase in thickness of electrodes from 1 to 2 mm, or increase in distance of collection plates from 5 to 10 cm did not change the $PM_{10}$ collection efficiency much. Increase in thickness of high-voltage electrodes, however, can cause decrease in $PM_{10}$ collection efficiency by 28% for low power consumption and high flow velocity. The ozone emission rate decreased as distance of collection plates became wider, because the ozone emission rate per unit channel was constant, and the number of collection channels decreased as the distance of collection plates increased. When the distance of collection plates was narrow, the ozone emission rate increased with the increase of the thickness of electrodes, but the difference was negligible when the distance of collection plates was wide. It was found that the electrostatic precipitator having a thin high-voltage electrodes and a narrow distance of collection plates is advantageous. However, to increase the thickness of high-voltage electrodes, or to increase the distance of collection plates is needed, it is necessary to increase the applied voltage or reduce the flow rate to compensate reduction of the collection efficiency.

Effect of Feeding on Postlarvae of Pacific White Shrimp, Litopenaeus vannamei during the Acclimation Process to Low Salinities in Seawater (해수 저염분 순치과정에서 먹이섭취가 흰다리새우, Litopenaeus vannamei 유생에 미치는 영향)

  • Kim, Su Kyoung;Shim, Na Young;Cho, Ji-Hyun;Kim, Jong Hyun;Kim, Su-Kyoung
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.377-384
    • /
    • 2018
  • This study focused on the effects of feeding on postlarvae of shrimp, Litopenaeus vannamei, during the identified acclimation time to low salinity. A total of 5 different salinity groups with or without feeding (32, 24, 16, 8, and 2 psu, 1 liter, triplicates) were prepared, and 30 shrimp were settled at PL21 (postlarvae) and placed in each group. After 24 hours of the experimentation process, the survival rate of the fed and starved groups was observed to be lower in the 2 psu group compared to other salinity groups, with the rate of 86.6% and 81.1%, respectively. The condition index of glucose and triglyceride, which are important factors for osmoregulation and as energy sources, was 4.2-7.6 times and 2.7-3.4 times higher in the fed groups than the starved groups at all the levels of salinities. The creatine level increased by 1.1-1.5 times in the starved groups as compared to the fed groups. Likewise, the activity of all the digestive enzymes like, lipase, ${\alpha}$-amylase, trypsin, and alkaline protease were clearly higher in the fed groups (ANOVA, p<0.05). Apparently, it was observed that feeding is effective for the postlarvae of shrimp, which shows a characteristic fast metabolism and larval development, during the acclimation period to low salinity.