Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.3.201

High Voltage β-Ga2O3 Power Metal-Oxide-Semiconductor Field-Effect Transistors  

Mun, Jae-Kyoung (RF/Power Components Research Group, Electronics and Telecommunications Research Institute)
Cho, Kyujun (RF/Power Components Research Group, Electronics and Telecommunications Research Institute)
Chang, Woojin (RF/Power Components Research Group, Electronics and Telecommunications Research Institute)
Lee, Hyungseok (RF/Power Components Research Group, Electronics and Telecommunications Research Institute)
Bae, Sungbum (RF/Power Components Research Group, Electronics and Telecommunications Research Institute)
Kim, Jeongjin (RF/Power Components Research Group, Electronics and Telecommunications Research Institute)
Sung, Hokun (Customer Engineering Lab, Korea Advanced Nano Fab Center)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.3, 2019 , pp. 201-206 More about this Journal
Abstract
This report constitutes the first demonstration in Korea of single-crystal lateral gallium oxide ($Ga_2O_3$) as a metal-oxide-semiconductor field-effect-transistor (MOSFET), with a breakdown voltage in excess of 480 V. A Si-doped channel layer was grown on a Fe-doped semi-insulating ${\beta}-Ga_2O_3$ (010) substrate by molecular beam epitaxy. The single-crystal substrate was grown by the edge-defined film-fed growth method and wafered to a size of $10{\times}15mm^2$. Although we fabricated several types of power devices using the same process, we only report the characterization of a finger-type MOSFET with a gate length ($L_g$) of $2{\mu}m$ and a gate-drain spacing ($L_{gd}$) of $5{\mu}m$. The MOSFET showed a favorable drain current modulation according to the gate voltage swing. A complete drain current pinch-off feature was also obtained for $V_{gs}<-6V$, and the three-terminal off-state breakdown voltage was over 482 V in a $L_{gd}=5{\mu}m$ device measured in Fluorinert ambient at $V_{gs}=-10V$. A low drain leakage current of 4.7 nA at the off-state led to a high on/off drain current ratio of approximately $5.3{\times}10^5$. These device characteristics indicate the promising potential of $Ga_2O_3$-based electrical devices for next-generation high-power device applications, such as electrical autonomous vehicles, railroads, photovoltaics, renewable energy, and industry.
Keywords
Gallium oxide; Field effect transistor (FET); On-resistance; Breakdown voltage; On-off current ratio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Bayraktaroglu, Assessment of $Ga_{2}O_{3}$ Technology [DOI: https://www.dtic.mil/dtic/tr/fulltext/u2/1038137.pdf]
2 A. Y. Polyakov, N. B. Smirnov, I. V. Schemerov, A. V. Chernykh, E. B. Yakimov, A. I. Kochkova, A. N. Tereshchenko, and S. J. Pearton, ECS J. Solid State Sci. Technol., 8, Q3091 (2018). [DOI: https://doi.org/10.1149/2.0171907jss]   DOI
3 A. Y. Polyakov, N. B. Smirnov, I. V. Schemerov, S. J. Pearton, F. Ren, A. V. Chernykh, and A. I. Kochkova, Appl. Phys. Lett., 113, 142102 (2018). [DOI: https://doi.org/10.1063/1.5051986]   DOI
4 S. Karmalkar and U. K. Mishra, IEEE Trans. Electron Devices, 48, 1515 (2001). [DOI: https://doi.org/10.1109/16.936500]   DOI
5 K. Zeng, A. Vaidya, and U. Singisetti, IEEE Electron Device Lett., 39, 1385 (2018). [DOI: https://doi.org/10.1109/LED.2018.2859049]   DOI
6 H. Liang, Y. Chen, X. Xia, C. Zhang, R. Shen, Y. Liu, Y. Luo, and G. Du, Mater. Sci. Semicond. Process., 39, 582 (2015). [DOI: https://doi.org/10.1016/j.mssp.2015.05.065]   DOI
7 A. P. Shah and A. Bhattacharya, J. Vac. Sci. Technol., A, 35, 041301 (2017). [DOI: https://doi.org/10.1116/1.4983078]   DOI
8 L. Zhang, A. Verma, H. (G.) Xing, and D. Jena, Jpn. J. Appl. Phys., 56, 030304 (2017). [DOI: https://doi.org/10.7567/jjap.56.030304]   DOI
9 J. Yang, S. Ahn, F. Ren, S. Pearton, R. Khanna, K. Bevlin, D. Geerpuram, and A. Kuramata, J. Vac. Sci. Technol., B, 35, 031205 (2017). [DOI: https://doi.org/10.1116/1.4982714]   DOI
10 J. K. Mun, K. J. Choi, J. W. Do, H. S. Lee, S. B. Bae, and W. J. Chang, Proc. Journal of the Korean Institute of Electrical and Electronic Material Engineers Annual Summer Conference 2018 (CDM THE BIG, Goseong-Gun, Korea, 2018) p. 35.
11 H. Yu, M. Schaekers, T. Schram, N. Collaert, K. D. Meyer, N. Horiguchi, A. Thean, and K. Barla, IEEE Electron Device Lett., 35, 957 (2014). [DOI; https://doi.org/10.1109/LED.2014.2340821]   DOI
12 J. T. Asubar, J. Ng, H. Tokuda, and M. Kuzuhara, Compd. Semicond. Mag., 22, 26 (2016). [DOI: https://data.angel.digital/pdf/CSOct16.compressed.pdf]
13 J. H. Ji and J. H. Koh, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 3 (2017). [DOI: http://kiss.kstudy.com/thesis/thesis-view.asp?key=3517150]
14 M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 100, 013504 (2012). [DOI: https://doi.org/10.1063/1.3674287]   DOI
15 A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, Jpn. J. Appl. Phys., 55, 1202A2 (2016). [DOI: https://doi.org/10.7567/jjap.55.1202A2]   DOI
16 M. Higashiwaki, A. Kuramata, H. Murakami, and Y. Kumagai, J. Phys. D: Appl. Phys., 50, 333002 (2017). [DOI: https://doi.org/10.1088/1361-6463/aa7aff]   DOI
17 G. Jessen, K. Chabak, A. Green, N. Moser, J. McCandless, K. Leedy, A. Crespo, and S. Tetlak, Proc. 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (IEEE, Miami, USA, 2017) p. 1.
18 T. Oshima, T. Okuno, and S. Fujita, Jpn. J. Appl. Phys., 46, 7217 (2007). [DOI: https://doi.org/10.1143/jjap.46.7217]   DOI