DOI QR코드

DOI QR Code

Comparison of Intraocular Pressure Values of Normotensive and Glaucomatous Rats Using Two Types of Tonometers

두 종류의 안압계로 측정한 정상안압과 녹내장 쥐의 안압 값 비교

  • Choy, Yoon-Jung (Department of Optometry, Eulji University College of Heath Sciences) ;
  • Choi, Jee-Hyun (Laboratory Animal Center, Osong Medical Innovation Foundation)
  • 최윤정 (을지대학교 보건과학부) ;
  • 최지현 (오송첨단의료산업진흥재단 실험동물센터)
  • Received : 2018.12.12
  • Accepted : 2018.12.24
  • Published : 2018.12.31

Abstract

Purpose : We compared intraocular pressure (IOP) values measured by two types of tonometers in condition of normotensive and glaucomatous rat model. We tried to determine which of tonometer can more easily and accurately measure the IOP of animal model. Methods : Glaucomatous eyes were induced by intracameral injections of hyaluronic acid in right eyes of six-week-old male Spargue-Dawley (SD) rats. Normotensive contralateral eyes were left eyes of the SD rats. IOP was measured using a rebound tonometer (Tonolab) and a immersive tonometer ($Tonopen^{(R)}$ XL) about 3:00 pm. Results : The mean IOP values of normotensive control eyes were $10.80{\pm}1.03mmHg$ by Tonopen, and $15.10{\pm}0.73mmHg$ by Tonolab. They were statistically insignificant (p = .1). The mean IOP values of glaucomatous experimental eyes were $30.20{\pm}2.67mmHg$ by Tonopen, and $37.90{\pm}2.73mmHg$ by Tonolab. They were statistically insignificant (p = .95). High IOP values of glaucomatous eyes by two types of tonometers had strong positive correlation each other (r = .904, p < .01). Conclusion : This is the first study to compare IOP values using two types of tonometers between normotensive and glaucomatous model made by intracameral injection of hyaluronic acid. Tonopen should be used carefully when the IOP is within normal range, and both Tonopen and Tonolab can be used reliably when the IOP is high.

목적 : 우리는 두 종류의 안압계로 정상 범위 안압과 녹내장 쥐 모델의 안압을 측정하여 안압값을 비교하였다. 두 안압계 중 어느 것이 더 쉽고 정확하게 동물 모델의 안압을 측정할 수 있는지 알아보고자 하였다. 방법 : 녹내장 눈은 6주령 수컷 Sparque-Dawley (SD) 쥐의 오른쪽 눈 전방에 점탄물질 히알루론산을 주입하여 유도하였으며 정상 대조군으로는 동일 쥐의 좌안을 사용하였다. 안압은 오후 3시경 리바운드 압평안압계 (Tonolab)와 함입 안압계 ($Tonopen^{(R)}$ XL)로 측정하였다. 결과 : 대조군인 정상 안압 눈의 평균 안압은 토노펜으로 측정 시 $10.80{\pm}1.03mmHg$, 토노랩으로 측정 시 $15.10{\pm}0.73mmHg$으로 측정되었다. 이 수치들은 통계적으로 유의한 차이는 없었다 (p = .1). 실험군인 녹내장 눈의 평균 안압은 토노펜으로 측정 시 $30.20{\pm}2.67mmHg$, 토노랩으로 측정 시 $37.90{\pm}2.73mmHg$로 측정되었다. 이 수치들은 통계적으로 유의한 차이는 없었다 (p = .95). 고안압인 녹내장 눈을 두안압계로 잰 수치들은 강한 양의 상관관계를 지니고 있었다 (r = .904, p < .01). 결론 : 이 연구는 두 가지 유형의 안압계를 사용하여 정상 범위 안압과 전방에 점탄물질을 삽입하여 유도한 녹내장 모델의 안압값을 비교한 최초의 연구이다. 토노펜은 안압이 정상범위일 때는 주의해서 사용해야 하며, 토노펜과 토노랩은 안압이 높은 범위일 때는 두 안압계 모두 안정적으로 사용될 수 있다.

Keywords

References

  1. Anders F, Mann C et al.: Correlation of Crystallin Expression and RGC Susceptibility in Experimental Glaucoma Rats of Different Ages. Curr Eye Res. 43(10), 1267-1273, 2018. https://www.ncbi.nlm.nih.gov/pubmed/29979889 https://doi.org/10.1080/02713683.2018.1485950
  2. Choy YJ, Shin JH et al.: Expression of Slit2 and Robo Receptors in High Tension Glaucoma: a Rat Glaucoma Model. Ann Optom Contact Lens. 16(1), 10-16, 2017. http://webcache.googleusercontent.com/search?q=cache:t3TF21PTtngJ:www.annocl.org/journal/download_pdf.php%3Fspage%3D10%26volume%3D16%26number%3D1+&cd=1&hl=ko&ct=clnk&gl=hk
  3. Morrison JC, Moore CG et al.: A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res. 64(1), 85-96, 1997. https://www.ncbi.nlm.nih.gov/pubmed/9093024 https://doi.org/10.1006/exer.1996.0184
  4. Yu YC, Kim SH et al.: Comparison of the Intraocular Pressure Measurement between Rebound Tonometer and Tonopen in Rats. J Korean Ophthalmol Soc. 48(1), 135-141, 2007. http://www.riss.kr/link?id=A100522972
  5. Moore CG, Milne ST et al.: Noninvasive measurement of rat intraocular pressure with the Tono-Pen. Invest Ophthalmol Vis Sci. 34(2), 363-369, 1993. https://www.ncbi.nlm.nih.gov/pubmed/8440590
  6. Quigley HA, Addicks EM: Chronic experimental glaucoma in primates. I. Production of elevated intraocular pressure by anterior chamber injection of autologous ghost red blood cells. Invest Ophthalmol Vis Sci. 19(2), 126-136, 1980. https://www.ncbi.nlm.nih.gov/pubmed/6766124
  7. Quigley HA, Hohman RM: Laser energy levels for trabecular meshwork damage in the primate eye. Invest Ophthalmol Vis Sci. 24(9), 1305-1307, 1983. https://www.ncbi.nlm.nih.gov/pubmed/6885314
  8. Moreno MC, Marcos HJ et al.: A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid. Exp Eye Res. 81(1), 71-80, 2005. https://www.ncbi.nlm.nih.gov/pubmed/15978257 https://doi.org/10.1016/j.exer.2005.01.008
  9. Kim YR, Kang WS et al.: Steroid-Induced Ocular Hypertension Model in the Mice. J Korean Ophthalmol Soc. 55(8), 1202-1207, 2014. http://www.riss.kr/link?id=A100524768 https://doi.org/10.3341/jkos.2014.55.8.1202
  10. Nagata N, Yuki M et al.: In vitro and in vivo comparison of applanation tonometry and rebound tonometry in dogs. J Vet Med Sci. 73(12), 1585-1589, 2011. https://www.ncbi.nlm.nih.gov/pubmed/21804316 https://doi.org/10.1292/jvms.11-0251
  11. Dibas A, Yang MH, et al.: Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Mol Vis. 14, 1770-1783, 2008. https://www.ncbi.nlm.nih.gov/pubmed/18836575
  12. Johnson EC, Jia L et al.: Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci. 48(7), 3161-3177, 2007. https://www.ncbi.nlm.nih.gov/pubmed/17591886 https://doi.org/10.1167/iovs.06-1282
  13. Guo Y, Johnson EC et al.: Early gene expression changes in the retinal ganglion cell layer of a rat glaucoma model. Invest Ophthalmol Vis Sci. 52(3), 1460-1473, 2011. https://www.ncbi.nlm.nih.gov/pubmed/21051717 https://doi.org/10.1167/iovs.10-5930
  14. Bai Y, Zhu Y et al.: Validation of glaucoma-like features in the rat episcleral vein cauterization model. Chin Med J (Engl). 127(2), 359-364, 2014. https://www.ncbi.nlm.nih.gov/pubmed/24438629
  15. Millar JC, Pang IH: Non-continuous measurement of intraocular pressure in laboratory animals. Exp Eye Res. 141, 74-90, 2015. https://www.ncbi.nlm.nih.gov/pubmed/25933714 https://doi.org/10.1016/j.exer.2015.04.018
  16. Rajaei SM, Mood MA et al.: Effects of diurnal variation and anesthetic agents on intraocular pressure in Syrian hamsters (Mesocricetus auratus). Am J Vet Res. 78(1), 85-89, 2017. https://www.ncbi.nlm.nih.gov/pubmed/28029289 https://doi.org/10.2460/ajvr.78.1.85
  17. Mermoud A, Baerveldt G et al.: Intraocular pressure in Lewis rats. Invest Ophthalmol Vis Sci. 35(5), 2455-2460, 1994. https://www.ncbi.nlm.nih.gov/pubmed/8163335
  18. Midelfart A, Wigers A: Clinical comparison of the ProTon and Tono-Pen tonometers with the Goldmann applanation tonometer. Br J Ophthalmol. 78(12), 895-898, 1994. https://www.ncbi.nlm.nih.gov/pubmed/7819170 https://doi.org/10.1136/bjo.78.12.895
  19. Kontiola A: A new electromechanical method for measuring intraocular pressure. Doc Ophthalmol. 93(3), 265-276, 1996. https://www.ncbi.nlm.nih.gov/pubmed/9550354