Browse > Article
http://dx.doi.org/10.17337/JMBI.2018.20.4.589

Comparison of Intraocular Pressure Values of Normotensive and Glaucomatous Rats Using Two Types of Tonometers  

Choy, Yoon-Jung (Department of Optometry, Eulji University College of Heath Sciences)
Choi, Jee-Hyun (Laboratory Animal Center, Osong Medical Innovation Foundation)
Publication Information
The Korean Journal of Vision Science / v.20, no.4, 2018 , pp. 589-596 More about this Journal
Abstract
Purpose : We compared intraocular pressure (IOP) values measured by two types of tonometers in condition of normotensive and glaucomatous rat model. We tried to determine which of tonometer can more easily and accurately measure the IOP of animal model. Methods : Glaucomatous eyes were induced by intracameral injections of hyaluronic acid in right eyes of six-week-old male Spargue-Dawley (SD) rats. Normotensive contralateral eyes were left eyes of the SD rats. IOP was measured using a rebound tonometer (Tonolab) and a immersive tonometer ($Tonopen^{(R)}$ XL) about 3:00 pm. Results : The mean IOP values of normotensive control eyes were $10.80{\pm}1.03mmHg$ by Tonopen, and $15.10{\pm}0.73mmHg$ by Tonolab. They were statistically insignificant (p = .1). The mean IOP values of glaucomatous experimental eyes were $30.20{\pm}2.67mmHg$ by Tonopen, and $37.90{\pm}2.73mmHg$ by Tonolab. They were statistically insignificant (p = .95). High IOP values of glaucomatous eyes by two types of tonometers had strong positive correlation each other (r = .904, p < .01). Conclusion : This is the first study to compare IOP values using two types of tonometers between normotensive and glaucomatous model made by intracameral injection of hyaluronic acid. Tonopen should be used carefully when the IOP is within normal range, and both Tonopen and Tonolab can be used reliably when the IOP is high.
Keywords
Normotensive and glaucomatous rat model; Hyaluronic acid; Tonolab; Tonopen;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Anders F, Mann C et al.: Correlation of Crystallin Expression and RGC Susceptibility in Experimental Glaucoma Rats of Different Ages. Curr Eye Res. 43(10), 1267-1273, 2018. https://www.ncbi.nlm.nih.gov/pubmed/29979889   DOI
2 Choy YJ, Shin JH et al.: Expression of Slit2 and Robo Receptors in High Tension Glaucoma: a Rat Glaucoma Model. Ann Optom Contact Lens. 16(1), 10-16, 2017. http://webcache.googleusercontent.com/search?q=cache:t3TF21PTtngJ:www.annocl.org/journal/download_pdf.php%3Fspage%3D10%26volume%3D16%26number%3D1+&cd=1&hl=ko&ct=clnk&gl=hk
3 Morrison JC, Moore CG et al.: A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res. 64(1), 85-96, 1997. https://www.ncbi.nlm.nih.gov/pubmed/9093024   DOI
4 Yu YC, Kim SH et al.: Comparison of the Intraocular Pressure Measurement between Rebound Tonometer and Tonopen in Rats. J Korean Ophthalmol Soc. 48(1), 135-141, 2007. http://www.riss.kr/link?id=A100522972
5 Moore CG, Milne ST et al.: Noninvasive measurement of rat intraocular pressure with the Tono-Pen. Invest Ophthalmol Vis Sci. 34(2), 363-369, 1993. https://www.ncbi.nlm.nih.gov/pubmed/8440590
6 Quigley HA, Addicks EM: Chronic experimental glaucoma in primates. I. Production of elevated intraocular pressure by anterior chamber injection of autologous ghost red blood cells. Invest Ophthalmol Vis Sci. 19(2), 126-136, 1980. https://www.ncbi.nlm.nih.gov/pubmed/6766124
7 Nagata N, Yuki M et al.: In vitro and in vivo comparison of applanation tonometry and rebound tonometry in dogs. J Vet Med Sci. 73(12), 1585-1589, 2011. https://www.ncbi.nlm.nih.gov/pubmed/21804316   DOI
8 Quigley HA, Hohman RM: Laser energy levels for trabecular meshwork damage in the primate eye. Invest Ophthalmol Vis Sci. 24(9), 1305-1307, 1983. https://www.ncbi.nlm.nih.gov/pubmed/6885314
9 Moreno MC, Marcos HJ et al.: A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid. Exp Eye Res. 81(1), 71-80, 2005. https://www.ncbi.nlm.nih.gov/pubmed/15978257   DOI
10 Kim YR, Kang WS et al.: Steroid-Induced Ocular Hypertension Model in the Mice. J Korean Ophthalmol Soc. 55(8), 1202-1207, 2014. http://www.riss.kr/link?id=A100524768   DOI
11 Dibas A, Yang MH, et al.: Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Mol Vis. 14, 1770-1783, 2008. https://www.ncbi.nlm.nih.gov/pubmed/18836575
12 Millar JC, Pang IH: Non-continuous measurement of intraocular pressure in laboratory animals. Exp Eye Res. 141, 74-90, 2015. https://www.ncbi.nlm.nih.gov/pubmed/25933714   DOI
13 Johnson EC, Jia L et al.: Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci. 48(7), 3161-3177, 2007. https://www.ncbi.nlm.nih.gov/pubmed/17591886   DOI
14 Guo Y, Johnson EC et al.: Early gene expression changes in the retinal ganglion cell layer of a rat glaucoma model. Invest Ophthalmol Vis Sci. 52(3), 1460-1473, 2011. https://www.ncbi.nlm.nih.gov/pubmed/21051717   DOI
15 Bai Y, Zhu Y et al.: Validation of glaucoma-like features in the rat episcleral vein cauterization model. Chin Med J (Engl). 127(2), 359-364, 2014. https://www.ncbi.nlm.nih.gov/pubmed/24438629
16 Kontiola A: A new electromechanical method for measuring intraocular pressure. Doc Ophthalmol. 93(3), 265-276, 1996. https://www.ncbi.nlm.nih.gov/pubmed/9550354
17 Rajaei SM, Mood MA et al.: Effects of diurnal variation and anesthetic agents on intraocular pressure in Syrian hamsters (Mesocricetus auratus). Am J Vet Res. 78(1), 85-89, 2017. https://www.ncbi.nlm.nih.gov/pubmed/28029289   DOI
18 Mermoud A, Baerveldt G et al.: Intraocular pressure in Lewis rats. Invest Ophthalmol Vis Sci. 35(5), 2455-2460, 1994. https://www.ncbi.nlm.nih.gov/pubmed/8163335
19 Midelfart A, Wigers A: Clinical comparison of the ProTon and Tono-Pen tonometers with the Goldmann applanation tonometer. Br J Ophthalmol. 78(12), 895-898, 1994. https://www.ncbi.nlm.nih.gov/pubmed/7819170   DOI