• Title/Summary/Keyword: 신경세포 배양

Search Result 204, Processing Time 0.026 seconds

Effect of Chungpaesagan-tang on Ischemic Damage in Organotypic Hippocampal Slice Culture (청폐사간탕(淸肺瀉肝湯)이 뇌해마 조직배양의 신경세포 자연사에 미치는 영향)

  • Lee, Min-Young;Ku, Ja-Seung;Kim, Sung-Hoon;Kim, Yoon-Bum;Kim, Sun-Yeou;Choi, Hyeon;Sohn, Young-Joo;Jung, Hyuk-Sang;Sohn, Nak-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.771-777
    • /
    • 2008
  • Chungpaesagan-tang which is used for treating patients of brain in cerebrovascular disease frequently from clinical doctor has not reported about the effect of neuronal aptosis caused of brain ischemia. The aim of this study is to investigate effect of Chungpaesagan-tang protecting neuronal cells from being damaged by brain ischemia through using organotypic hippocampal slice cultures. We caused ischemic damage to organotypic hippocampal slice cultures by oxygen and glucose deprivation. And added Chungpaesagan-tang extract to cultures. thereafter we measured area percentage of propidium iodide (PI)-stained neuronal cell, lactate dehydrogenase (LDH) levels in culture media and Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Area percentage of PI-stained neuronal cells and count of TUNEL-positive cells in CA1 and DG area of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Chungpaesagan-tang extract. LDH levels in culture media of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Chungpaesagan-tang extract. Within pertinent density level, Chungpaesagan-tang has cell protection effect that prevents brain ischemia damaging neuronal cells and apoptosis increasing.

Characteristics of NMDA- and Glutamate-Induced Currents in Primary Cultured Rat Hippocampal Neurons (일차 배양 해마신경세포에서 NMDA- 및 Glutamate- 유도전류의 특성)

  • Kim, Il-Man;Son, Eun-Ik;Kim, Dong-Won;Kim, In-Hong;Yim, Man-Bin;Song, Dae-Kyu;Park, Won-Kyun;Bae, Jae-Hun;Choi, Ha-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.11
    • /
    • pp.1429-1436
    • /
    • 2000
  • Objectives : This study was performed in cultured rat hippocampal neurons to investigate the acute electrophysiological features of ionotropic glutamate receptors which act as a major excitatory neurotransmitter in mammalian brain. Method : Glutamate receptor agonists were applied into the bath solution embedding in whole-cell patch-clamp recording of single hippocampal neuron. Results : In voltage-clamped at -60mV and the presence of 1mmol $Mg^{2+}$, extracellulary applied NMDA did not induce any inward current. Both the elimination of $Mg^{2+}$ and addition of glycine in bath, however, elicited a NMDAinduced inward current. $Mg^{2+}$ block current was increased gradually in more negative potentials from -30mV, showing a negative slope in I-V plot with $Mg^{2+}$. Glutamate-induced current represented an outward rectification. A non-NMDA receptor component occupied about 40% of glutamate-induced current in the voltage range of -80mV to +60mV. Conclusion : Present study suggests that glutamate activates acutely the non-NMDA receptors which induces an inward current in the level of resting membrane potential. This makes the membrane potential increase and can activate the NMDA receptors that permit calcium influx against $Mg^{2+}$ block. At the depolarized state of neuron, there may be recovery mechanisms of membrane potential to repolarize irrespective of voltage-dependent potassium channels in the hippocampal neurons.

  • PDF

Inhibitory Effects of Extracts from Traditional Herbal Drugs on 5-Hydroxytryptamine Uptake in Primary Cultured Rat Brainstem Neurons (배양된 흰쥐 뇌간 신경세포에서 5-Hydroxytryptamine 흡수에 대한 각종 전통 생약 추출물의 억제 효과)

  • Cho, Hyun-Mi;Jung, Jun-Sup;Lee, Tae-Hee;Son, Kun-Ho;Suh, Hong-Won;Song, Dong-Keun;Kim, Yung-Hi
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.4
    • /
    • pp.349-354
    • /
    • 1995
  • Crude methanolic(80%) extracts from 109 kinds of traditional herbal drugs were randomly screened for inhibitory effects on 5-hydroxytryptamine(5-HT) uptake in primary cultured rat brainstem neurons. Rat brainstem neurons were cultured from embryonic day 14, and maintained for 7-9 days in vitro. Clomipramine (500 nM), a reference drug, decreased 5-HT uptake to 16% of control values. Of the 109 herbal drugs screened, Citri immaturi Pericarpium(靑皮), Coptidis Rhizoma(黃蓮), Cnidii Rhizoma(土川芎) showed the most potent 5-HT uptake inhibiting activities. These herbal drugs, at the concentration of $10{\;}{\mu}g/ml$, inhibited 5-HT uptake 69, 69, and 57% respectively, when inhibition(%) was expressed as a relative value compared to the 500 nM clomipramine-induced inhibition.

  • PDF

Effects of Herbar Chelidonii on the Cultured Spinal Sensory Neurons Damaged by XO/HX (백굴채(白屈菜)가 손상된 배양척수감각신경세포에 미치는 영향)

  • Shin, Byung-Cheul;Song, Yung-Sun
    • The Journal of Korea CHUNA Manual Medicine
    • /
    • v.2 no.1
    • /
    • pp.143-157
    • /
    • 2001
  • Objectives and Methods : To evaluate the mechanism of oxidative damage by xanthine oxydase(XO) and hypoxanthine(HX)-induced oxygen radicals, MTT assay and NR assay were carried out after the cultured mouse spinal sensory neurons were preincubated for 4 hours with various concentrations of XO/HX. And the amount of total protein. neurofilament EIA. lipid peroxidation and LDH activity were measured, to evaluate the protective effect of Herbar Chelidonii(HC) water extract on cultured spinal sensory neurons damaged by XO/HX. after the cultured mouse spinal sensory neurons were preincubated with various concentrations of HC water extract for 3 hours prior to exposure of XO/HX. Results : XO/HX decreased significantly the survival rate of the cultured mouse sensory neurons by NR assay and MTT assay In proportion to concentration and exposed time. In proportion to concentration and exposed time on cultured spinal sensory neurons, XO/HX showed the quantitative decrease of neurofilament by EIA. the decrease of total protein amount by SRB assay and the Increase of lipid peroxidation as well as LDH. HC showed the quantitative increase of neurofilament and total protein, but showed the decrease of lipid peroxidation and LDH activity against the neurotoxicity of XO/HX. Conclusions : From the above results, it is concluded that XO/HX have a neurotoxic effect on cultured spinal sensory neurons and that the herbs extract, such as HC, prevent the toxicity of XO/HX effectively in that they decrease lipid peroxidation and LDH activity.

  • PDF

Effect of Ziziphi Jujubae Semen on 5-Fluorouracil Induced cytotoxicity in Cultured Vestibular Neurons (배양전정신경세포에 있어서 5-Fluorouracil의 세포독성에 대한 산조인의 효과)

  • Son Il Hong;Lee Jung Hun;Choi Yu Sun;Lee Jae Kyoo;Kim Hyung Su;Lee Yong Suk;Lee Whan Bong;Choi Ki Wook;Min Bu Ki;Kim Sang Su;Lee Kang Chang;Ryu Myeung Hwan;Song Ho Joon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.146-149
    • /
    • 2002
  • To evaluate the protective effect of Ziziphi Jujubae Semen(ZJS) on 5-Fluorouracil(5-Fu) in cultured vestibular neurons(VN), neurotoxicity was assessed by XTT assay after VN was exposed to 3-24ug/ml 5-Fu for 48 hours. and also, the neuroprotective effect of ZJS was measured by XTT assay in these cultrures. Cell viability was remarkably decreased dose-dependently, after the treatment with 12ug/ml 5-Fu to cultured VN for 48 hours. In the neuroprotective effect of ZJS on the toxicity induced by 5-Fu, ZJS prevented the neurotoxicity induced by 5-Fu in these cultures. From above the results, it suggests that 5-Fu is toxic in cultured VN and herb extract, ZJS has protective effect over the neurotoxicity induced by 5-Fu.

Cytotoxicity of Hydrogen Peroxide and Effects of Rhizoma Gastrodiae Against Hydrogen Peroxide in Mouse Cerebral Neurons (생쥐의 배양 대뇌신경세포에 대한 Hydrogen Peroxide의 세포독성 및 천마의 영향)

  • Choi Yu Sun;Lee Eun Mi;Son Young Woo;Lee Kang Chang;Shin Yong Il;Song Myung Su;Choi Young Ja;Choi Kyu Chul;Kang Hyung Won;Lim Chang Yong;Rhu Ti Yong;Park Sea Hong;Park Seung Taeck
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.928-931
    • /
    • 2002
  • To elucidate the toxic effect of oxygen free radicals on cultured mouse cerebral neurons damaged by hydrogen peroxide(H₂O₂)-induced neurotoxicity, we examined the neurotoxicity induced by oxygen radicals by NR assay when cultured cerebral neurons were grown in the media containing various concentrations of H202 for 6 hours. In addition, neuroprotective effects of herb extracts such Rhizoma Gastrodiae(RG) on H202-induced neurotoxicity in cultured cerebral neurons were evaluated after cultured cerebral neurons were preincubated with various concentrations of herb extract, RG for 2 hours before 50uM H₂O₂ for 6 hours. H₂O₂ decreased remarkably cell viability in dose-and time-dependent manner in these cultures, and also herb exract, RG decreased LDH activity of cerebral neurons damaged by H₂O₂. From the above results, it is suggested that H₂O₂ was toxic in cultured cerebral neurons from mouse, and RG was effective in blocking the neurotoxicity induced by oxygen radicals in these cultures.

Comparison on Growth and Biochemical Composition of Gymnodinium sanguineum and Skeletonema costatum Grown in Different N, P Concentrations (질산염과 인산염 농도 변화에 따른 Gymnodinium sanguineum과 Skeletonema costatum의 성장과 생화학적 구성성분의 비교)

  • Lee, Taek-Kyun;Park, Myung-Whan;Shin, Kyoung-Soon;Chang, Man
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.4
    • /
    • pp.395-401
    • /
    • 2000
  • Growth and biochemical composition were analyzed in Gymnodinium sanguineum and Skeletonema costatum grown in media containing various nitrate and phosphate concentrations. Concentrations of nitrate and phosphate in the growth media were 0, 0.3, 0.6, 0.9, 1.2mM and 0, 15, 30, 45, 60 $\mu$M, respectively. Growth of G. sanguineum was suppressed in the low concentration of nitrate and phosphate (below N = 0.3 mM and P = 15 $\mu$M), whereas growth of S. costatum did not changed. At the low concentrations of nitrate and phosphate, amount of intracellular protein and carbohydrate in G. sanguineum cells were largely decreased, whereas content of carbohydrate in S. costatum cells was increased little. Amount of neutral lipid and phospholipid in G. sanguineum didn't changed, but concentration of glycolipid was largely decreased in the medium containing low concentrations of nitrate and phosphate. However the levels of TAG, glycolipid, and phospholipid did not changed in S. costatum cells. These results show that S. costatum is more adaptable than G. sanguineum in the low concentration of nitrate and phosphate.

  • PDF

C-fos mRNA Expression in Rat Hippocampal Neurons by Antidepressant Drugs (배양한 흰쥐 해마신경세포에서 항우울제에 의한 c-fos mRNA의 발현)

  • Park, Eung-Chul;Cho, Yun-Gyoo;Yang, Byung-Hwan;Kim, Kwang-Iel;Yang, Bo-Gee;Chai, Young-Gyu
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.85-95
    • /
    • 2001
  • This study was designed to examine the effects of two antidepressant drugs on the expression of c-fos mRNA in cultured embryonic rat hippocampal neurons. The drugs used were imipramine and amitriptyline. On the fourth day of culture, hippocampal neurons were treated with variable concentrations of each drug. Competitive RT-PCR(Reverse Transcriptase-PCR) analysis was used to quantify the c-fos mRNA expression induced by each drug. Experimental results showed that acute and direct treatment with imipramine and amitriptyline with relatively low concentrations(imipramine ${\leq}10{\mu}M$, amitriptylne ${\leq}10{\mu}M$) had no inductive effect on the expression of c-fos mRNA in the rat hippocampal neurons. However, after treatment with relatively high concentrations(imipramine ${\geq}100{\mu}M$, amitriptyline ${\geq}100{\mu}M$) c-fos mRNA was not detected. These findings suggest the followings. Firstly, the action mechanisms of these drugs on the hippocampal neurons might not be mediated by c-fos but by other immediate-early genes(IEGs). Secondly, their actions may be mediated indirectly via other areas of the brain. Thirdly, the expression of c-fos might be inhibited by high concentrations of these drugs, or the high concentrations could induce cell death. Finally, though cell death remains to be confirmed, the inhibition of c-fos induction or cell death could play a role in the cognitive impairments known to be adverse effects of some antidepressants. This study is believed to be a first step toward understanding the mechanisms of learning and memory. Further studies are needed to investigate the expression of various IEGs and changes in the hippocampal neurons of rat resulting from chronic treatment with antidepressant drugs.

  • PDF

Voluntary Motor Control Change after Gait Training in Patients with Spinal Cord Injury (척수신경손상 환자의 보행훈련 전.후의 능동적 근육제어의 변화)

  • 임현균;이동철;이영신;셔우드아더
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2003
  • In this study, muscle activity was measured using surface EMG (sEMG) during a voluntary maneuver (ankle dorsiflexion) in the supine position was compared pre and post gait training. Nine patients with incomplete spinal cord injury participated in a supported treadmill ambulation training (STAT), twenty minutes a day, five days a week for three months. Two tests, a gait speed test and a voluntary maneuver test, were made the same day, or at least the same week, pre and post gait training. Ten healthy subjects' data recorded using the same voluntary maneuvers were used for the reference. sEMG measured from ten lower limb muscles was used to observe the two features of amplitude and motor control distribution pattern, named response vector. The result showed that the average gait speed of patients increased significantly (p〈0.1) from 0.47$\pm$0.35 m/s to 0.68$\pm$0.52 m/s. In sEMG analysis, six out of nine patients showed a tendency to increase the right tibialis anterior activity during right ankle dorsiflexion from 109.7$\pm$148.5 $mutextrm{V}$ to 145.9$\pm$180.7 $mutextrm{V}$ but it was not significant (p〈0.055). In addition, only two patients showed increase of correlation coefficient and total muscle activity in the left fide during left dorsiflexion. Patients' muscle activity changes after gait training varied individually and generally depended on their muscle control abilities of the pre-STAT status. Response vector being introduced for quantitative analysis showed good Possibility to anticipate. evaluate, and/or guide patients with SCI, before and after gait training.

Gene Expression Profile Associated with the Differentiation of Osteoblasts from Human Mesenchymal Stem Cells (인간 중간엽 줄기세포로부터 골아세포로의 분화시 관찰되는 유전자 발현 분석)

  • Kim Yeo-Kyeoung;Kim Hee-Nam;Lee Il-Kwon;Park Kyeong-Soo;Yang Deok-Hwan;Cho Sang-Hee;Lee Je-Jung;Chung Ik-Joo;Kim Soon-Hag;Kim Hyeoung-Joon
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.231-239
    • /
    • 2006
  • Human mesenchymal stem cells (hMSCs) in bone marrow (BM) can be induced to differentiate into a variety of mesenchymal tissues, including adipocytes, osteoblasts and chondroblasts, under the influence of certain growth or environmental factors. In this study, we analyzed the differentiation process and the associated gene expression profiles inherent to the process by which hMSCs differentiate into osteoblasts. We conducted a comparison of gene expression profiles of the normal human BM MSCs, using human 8K cDNA microarray, incubated in media containing either a combination of $\beta$-glycerol phosphate, L-ascorbic acid, and dexamethasone, or in medium lacking these osteogenic supplements. During the osteoblastic differentiation process, 36 genes were determined to be up-regulated, and 59 genes were shown to be down-regulated. Osteoprotegerin, LRP5, and metallothionein 2A, all of which are associated with the osteogenetic process, were up-regulated, and genes associated with the differentiation of MSCs into other lineages, including muscle, adipose tissue and vascular structure were down-regulated. The set of differentially expressed genes reported in this work should contribute to our current understanding of the processes inherent to the differentiation of MSCs into osteoblasts.