• Title/Summary/Keyword: 시멘트 유지형 임플란트

Search Result 31, Processing Time 0.025 seconds

A new retaining method of cement-retained restoration with linguo-horizontal insertion of fiber post (시멘트 유지형 임플란트 보철물의 신개념 유지 방식: Fiber post의 설측 수평 삽입에 의한 유지력 보완)

  • Yoon, Na Ree;Lee, Richard sungbok;Lee, Suk Won;Ahn, Su Jin;Park, Su Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.1
    • /
    • pp.71-78
    • /
    • 2017
  • The retaining methods of implant prosthesis were classified into a screw-retained and a cement-retained type. A screw-retained prosthesis has many advantages, such as retrievability, preventing residual cement, while their disadvantages include the possibility of screw loosening and fracture, on the contrary advantages of cement-retained prosthesis are relatively low cost, but they are difficult to retrieve. To combine the advantages of both type, screw-cement retained prosthesis (SCRP) type have been introduced. But they still require ideal implant placement. So we introduce fiber post retained prosthesis without residual cement for preventing soft tissue trouble due to excessive cement.

Retrievable SCP (screw-cement prosthesis) implant-supported fixed partial dentures in a fully edentulous patient: a case report (완전 무치악 환자에서 나사-시멘트 보철물(SCP: screw-cement prosthesis)을 이용한 임플란트 보철 수복 증례)

  • Kim, Joo-Hyeun;Yun, Bo-Hyeok;Jang, Jung-Eun;Huh, Jung-Bo;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.318-323
    • /
    • 2012
  • Implant prostheses were classified into screw-retained prosthesis and cement-retained prosthesis by their method of retaining, and there is screw and cement retained implant prosthesis (SCRP) which has been made reflecting the strengths of these two. The advantages of the SCRP technique are easy retrievability and passive fit of implant prostheses. However, the occlusal screw holes of implant prostheses can be thought as a disadvantage with respect to esthetics and occlusion. Inappropriately positioned implants also limited the use of the SCRP technique. The present study is reporting about the case where nine implants (US II, OSSTEM, Seoul, Korea) were placed in maxilla and eight in mandible respectively in fully edentulous patients. Then, the cement-retained prosthesis was applied for the part in which the screw hole positioned improperly, and screw-retained prosthesis for properly positioned implants so that the combined screw-cement prosthesis has been produced where the satisfying result has shown in both function and esthetics. Three-year follow-up has been done for the patient.

Burnishing effect on marginal misfit of implant-supported screw-and-cement retained prostheses: A case report (임플란트 지지 나사-시멘트 유지형 보철물에서 보철물-지대주 제거 후 변연부 연마의 효과: 증례보고)

  • Kim, Mijoo;Lee, Du-Hyeong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.239-243
    • /
    • 2020
  • When the marginal fit of fixed dental prosthesis decreases, biological and technical complications, such as plaque accumulation, periodontal disease, hypersensitivity, components fracture, cement loss, can happen. The complications affect the long-term success and survival of prostheses. This case report describes a clinical procedure to minimize the marginal gap of implant-supported screw-and-cement retained prosthesis by removing prosthesis-abutment complex and burnishing the interface area. The marginal gap was measured before and after the burnishing using a stereomicroscope and compared. This technique improves the marginal fit, thereby contributing the longevity of the prosthesis.

Maxillary anterior fixed implant prosthesis using customized nonprecious metal casting abutment: a case report (비귀금속 주조 맞춤형 지대주를 이용한 상악 전치부 임플란트 보철수복 증례)

  • Lee, Jae-In
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.1
    • /
    • pp.50-59
    • /
    • 2015
  • It is hard to restore and manage anterior teeth esthetically and functionally; because of peri-implantitis, not only hard and soft tissue problem such as alveolar bone resorption and interdental papilla loss but also esthetic problem caused by metal abutment exposure can occur. This case presents patients using customized abutment made of Co-Cr alloy that can be made by conventional casting and compensate the shortcomings of prefabricated titanium abutments, and cement-retained prosthesis.

The Effect of Temporary Cement Cleaning Methods on the Retentive Strength of Cementation Type Implant Prostheses (임시 시멘트 제거방법이 시멘트 유지형 임플란트 보철물의 유지력에 미치는 영향)

  • Shin, Hwang-Kyu;Song, Young-Gyun;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.125-140
    • /
    • 2011
  • The remnant of temporary cement on the intaglio surface of cast restoration may have a negative effect on the retentive strength of permanent cement. This study was to evaluate the effect of temporary cement cleaning methods on the retentive strength of cementation type implant prostheses. Prefabricated implant abutments - height 5.5mm, diameter 4.5mm, 6 degree axial wall taper with chamfer margins were used. Forty copings-abutment specimens were divided into four groups(each n=10) according to the cleaning methods for temporary cement(Temp-$Bond^{(R)}$) as follows : no temporary cementation(the control group), orange solvent, ultrasonic cleaning, air borne-particle abrasion. After the application of temporary cement and the separation, the cleaning procedure was performed according to the protocol of each group. The specimens were cemented with $Premier^{(R)}$ Implant $Cement^{TM}$. After the permanent cementation, the specimens were subjected to thermocycling and pulled out from the specimens with a universal testing machine at a cross-head speed of 0.5mm/min. After the retentive strength test, all the specimens were cleaned using ultrasonic cleaning, abraded with air borne-particles, and steam-cleaned. Likewise, the specimens were temporarily cemented(Temp-$Bond^{(R)}$ NE), cleaned according to the protocol of each group, cemented with $Premier^{(R)}$ Implant $Cement^{TM}$ and subjected to thermocycling and measurement of their retentive strength. The mean of group with orange solvent were significantly lower than those of other groups(p<0.05). There was no significance between group with ultrasonic cleaning and group with air borne-particle abrasion. Group with ultrasonic cleaning and group with air-particle abrasion were no significance at control group. There was no significance between group cemented with Temp-$Bond^{(R)}$ and group cemented with Temp-$Bond^{(R)}$ NE. Within the limitation of this study, it can be concluded that the temporary cement cleaning method with only orange solvent may have a negative effect on the retentive strength of permanent cement. Ultrasonic cleaning and air borne-particle abrasion methods are recommended for the temporary cement cleaning method on cementation type implant prostheses.

SB-locking method for keeping implant restorations mechanically in place using fiber post: A case report (Fiber post를 이용하여 임플란트 지대주에 보철물을 결합하는 SB-locking method: A case report)

  • Chung, Min Ah;Leesungbok, Richard;Lee, Suk Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.356-362
    • /
    • 2020
  • All the faculties at the prosthodontic department in Kyung Hee University Dental Hospital at Gangdong, have been implementing the Top-Down concept of treatment approach since 2006 in which the outcomes of the last prosthetic treatment are predicted in advance during the treatment planning stage of patients with dental tissue defects. Based on the Top-Down concept, this report is also an example of how the final prosthetic treatment was performed in advance before going into implant surgery for the missing teeth. Among the various methods of connecting implant fixture and restoration, the cement-retained method is relatively simple to manufacture restoration without being constrained by the angle of the implants placed, but difficult to remove remaining subgingival excess cement completely, and to detach it being when necessary. In the report, SB-locking method will be introduced which enables an aesthetic implant restoration without either a screw hole or residual excess cement.

3-D Finite element stress analysis in screw-type, cement-type, and combined-type implant fixed partial denture designs (임플란트 상부보철물의 유지형태에 따른 3차원 유한요소 응력분석)

  • Lee, Sung-Chun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • Statement of problems: Stress analysis on implant components of the combined screw- and cement-retained implant prosthesis has not investigated yet. Purpose: The purpose of this study was to assess the load distribution characteristics of implant prostheses with the different prosthodontic retention types, such as cement-type, screw-type and combined type by using 3-dimensional finite element analysis. Material and methods: A 3-dimensional finite element model was created in which two SS II implants (Osstem Co. Ltd.) were placed in the areas of the first premolar and the first molar in the mandible, and three-unit fixed partial dentures with four different retention types were fabricated on the two SS II implants. Model 1 was a cement-retained implant restoration made on two cement-retained type abutments (Comocta abutment; Osstem Co. Ltd.), and Model 2 was a screw-retained implant restoration made on the screw-retained type abutments (Octa abutment; Osstem Co. Ltd.). Model 3 was a combined type implant restoration made on the cement-retained type abutment (Comocta abutment) for the first molar and the screw-retained type abutment (Octa abutment) for the first premolar. Lastly, Model 4 was a combined type implant restoration made on the screw-retained type abutment (Octa abutment) for the first molar and the cement-retained type abutment (Comocta abutment) for the first premolar. Average masticatory force was applied on the central fossa in a vertical direction, and on the buccal cusp in a vertical and oblique direction for each model. Von-Mises stress patterns on alveolar bone, implant body, abutment, abutment screw, and prosthetic screw around implant prostheses were evaluated through 3-dimensional finite element analysis. Results: Model 2 showed the lowest von Mises stress. In all models, the von Mises stress distribution of cortical bone, cancellous bone and implant body showed the similar pattern. Regardless of loading conditions and type of abutment system, the stress of bone was concentrated on the cortical bone. The von-Mises stress on abutment, abutment screw, and prosthetic screw showed the lower values for the screw-retained type abutment than for the cement-retained type abutment regardless of the model type. There was little reciprocal effect of the abutment system between the molar and the premolar position. For all models, buccal cusp oblique loading caused the largest stress, followed by buccal cusp vertical loading and center vertical loading. Conclusion: Within the limitation of the FEA study, the combined type implant prosthesis did not demonstrate more stress around implant components than the cement type implant prosthesis. Under the assumption of ideal passive fit, the screw-type implant prosthesis showed the east stress around implant components.