DOI QR코드

DOI QR Code

3-D Finite element stress analysis in screw-type, cement-type, and combined-type implant fixed partial denture designs

임플란트 상부보철물의 유지형태에 따른 3차원 유한요소 응력분석

  • Lee, Sung-Chun (Department of Prosthodontics, Graduate School of Clinical Dental Science, The Catholic University of Korea) ;
  • Kim, Seok-Gyu (Department of Prosthodontics, Graduate School of Clinical Dental Science, The Catholic University of Korea)
  • 이성천 (가톨릭대학교 의과대학 임상치과학대학원 치과보철학과) ;
  • 김석규 (가톨릭대학교 의과대학 임상치과학대학원 치과보철학과)
  • Published : 2009.10.30

Abstract

Statement of problems: Stress analysis on implant components of the combined screw- and cement-retained implant prosthesis has not investigated yet. Purpose: The purpose of this study was to assess the load distribution characteristics of implant prostheses with the different prosthodontic retention types, such as cement-type, screw-type and combined type by using 3-dimensional finite element analysis. Material and methods: A 3-dimensional finite element model was created in which two SS II implants (Osstem Co. Ltd.) were placed in the areas of the first premolar and the first molar in the mandible, and three-unit fixed partial dentures with four different retention types were fabricated on the two SS II implants. Model 1 was a cement-retained implant restoration made on two cement-retained type abutments (Comocta abutment; Osstem Co. Ltd.), and Model 2 was a screw-retained implant restoration made on the screw-retained type abutments (Octa abutment; Osstem Co. Ltd.). Model 3 was a combined type implant restoration made on the cement-retained type abutment (Comocta abutment) for the first molar and the screw-retained type abutment (Octa abutment) for the first premolar. Lastly, Model 4 was a combined type implant restoration made on the screw-retained type abutment (Octa abutment) for the first molar and the cement-retained type abutment (Comocta abutment) for the first premolar. Average masticatory force was applied on the central fossa in a vertical direction, and on the buccal cusp in a vertical and oblique direction for each model. Von-Mises stress patterns on alveolar bone, implant body, abutment, abutment screw, and prosthetic screw around implant prostheses were evaluated through 3-dimensional finite element analysis. Results: Model 2 showed the lowest von Mises stress. In all models, the von Mises stress distribution of cortical bone, cancellous bone and implant body showed the similar pattern. Regardless of loading conditions and type of abutment system, the stress of bone was concentrated on the cortical bone. The von-Mises stress on abutment, abutment screw, and prosthetic screw showed the lower values for the screw-retained type abutment than for the cement-retained type abutment regardless of the model type. There was little reciprocal effect of the abutment system between the molar and the premolar position. For all models, buccal cusp oblique loading caused the largest stress, followed by buccal cusp vertical loading and center vertical loading. Conclusion: Within the limitation of the FEA study, the combined type implant prosthesis did not demonstrate more stress around implant components than the cement type implant prosthesis. Under the assumption of ideal passive fit, the screw-type implant prosthesis showed the east stress around implant components.

연구목적: 임플란트 보철물의 유지형태 중 나사 및 시멘트 혼합 유지형의 경우 나사 풀림력 등에 영향을 주는 임플란트 구성 성분의 응력에 관한 연구가 부족하였다. 임플란트 상부 보철물의 유지형태, 즉, 시멘트 유지와 나사 유지, 그리고 이 두 가지 유지형태가 서로 연결된 혼합형의 임플란트 보철물의 응력분산의 특징들을 3차원 유한요소분석법을 이용하여 비교하고자 하였다. 연구재료 및 방법: 하악골에서 제1소구치 부위와 제1대구치 부위에 2개의 임플란트 (SS II, Osstem Co. Ltd., Seoul, Korea)를 식립한 가상의 3본 계속가공의치를 모델화하였다. 지대주 종류와 그 위치에 따라, 4가지 모형 군으로 나누어 실험하였다. 모형 1은제1대구치와 제1소구치 각각의 고정체에 모두 동일한 시멘트 유지형 지대주인 Comocta abutment (Osstem Co. Ltd) 를 장착하여 3본 계속가공의치를 합착시킨 경우이고, 모형 2는 제1대구치와 제1소구치 각각의 고정체에 모두 나사 유지형 지대주인 Octa abutment (Osstem Co. Ltd) 를 장착하여 3본 계속가공의치를 나사로 고정시킨 경우이며, 모형 3은 제1대구치의 고정체에는 시멘트 유지형 지대주인 Comocta abutment를 장착하고, 제1소구치에는 나사 유지형 지대주인 Octa abutment를 장착한 후 3본 계속가공의치를 각각 시멘트 합착 및 나사로 고정시킨 경우이다. 그리고 모형 4는 모형 3에서 각각 제1대구치 및 제1소구치의 지대주를 맞바꾼 후 3본 계속가공의치를 나사 및 시멘트로 고정시킨 경우로 나누었다. 평균저작압인 하중을 대구치 565 N과 소구치 288 N의 힘으로 설정하고 수직방향으로 중심와와 협측 교두정에, 그리고 $30^{\circ}$ 경사 하중을 협측 교두정 부위에 준 다음 골, 고정체, 지대주, 그리고 지대주 나사 등에 나타나는 von-Mises stress 양상을 평가하였다. 결과: 네 가지 모형 중 나사 유지형 지대주인 Octa abutment를 제1대구치와 제1소구치 부위에 사용한 모형 2가 전반적으로 가장 낮은 안정적인 응력 분포를 보였다. 네 가지 모형 모두 피질골 및 고정체에 미치는 응력 크기 및 분포는 거의 유사하며, 치조골에 작용하는 응력은 하중의 종류와 상관없이 주로 피질골에 집중되었다. 지대주, 지대주 나사, 그리고 보철물 나사 등에 미치는 응력 크기나 분포는 모형에 관계없이 나사 유지형인 경우가 시멘트 유지형인 경우에 비해 낮은 안정적인 값을 보였다. 제1대구치와 제1소구치의 상부 구조물의 차이에 의한 교호작용 (reciprocal action)은 상대적으로 약하였다. 모든 부위에서 중앙 수 직하중, 교두정 수직하중, 그리고 교두정 경사하중의 순으로 응력값이 증가하였다. 결론: 본 유한 요소실험의 한계내에서 나사 및 시멘트 혼합 유지형의 임플란트 보철물은 시멘트 유지형만 사용하는 경우와 비교하여 주위에 더 큰 응력을 나타내지는 않았다. 이상적인 passive fit의 가정하에서 나사 유지형의 임플란트 보철물이 본체와 주위에 가장 작은 응력을 나타내었다.

Keywords

References

  1. Adell R, Eriksson B, Lekholm U, Br$\aa$nemark PI, Jemt T. Long-term follow-up study fosseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 1990;5:347-59
  2. Albrektsson T. A multicenter report on osseointegrated oral implants. J Prosthet Dent 1988;60:75-84 https://doi.org/10.1016/0022-3913(88)90355-1
  3. Preiskel HW, Tsolka P. The DIA anatomic abutment system and telescopic prostheses: a clinical report. Int J Oral Maxillofac Implants 1997;12:628-33
  4. Singer A, Serfaty V. Cement-retained implant-supported fixed partial dentures: a 6-month to 3-year follow-up. Int J Oral Maxillofac Implants 1996;11:645-9
  5. Misch CE. Screw-retained versus cement-retained implantsupported prostheses. Pract Periodontics Aesthet Dent 1995;7:15-8
  6. Clelland NL, Carr AB, Gilat A. Comparison of strains transferred to a bone simulant between as-cast and postsoldered implant frameworks for a five-implant-supported fixed prosthesis. J Prosthodont 1996;5:193-200 https://doi.org/10.1111/j.1532-849X.1996.tb00296.x
  7. English CE. Implant-supported versus implant-natural tooth-supported fixed partial dentures. J Dent Symp 1993;1:10-5
  8. Khraisat A, Stegaroiu R, Nomura S, Miyakawa O. Fatigue resistance of two implant/abutment joint designs. J Prosthet Dent 2002;88:604-10 https://doi.org/10.1067/mpr.2002.129384
  9. Lee JM, Kim YS, Kim CW, Kim YH. 3-D FEA of three different single tooth abutments : Cement-retained vs screw-retained. J Korean Acad Prosthodont 1999;37:269-88
  10. Guichet DL, Caputo AA, Choi H, Sorensen JA. Passivity of fit and marginal opening in screw- or cement-retained implant fixed partial denture designs. Int J Oral Maxillofac Implants 2000;15:239-46
  11. Hebel KS, Gajjar RC. Cement-retained versus screw-retained implant restorations: Achieving optimal occlusion and esthetics in implant dentistry. J Prosthet Dent 1997;77:28-35 https://doi.org/10.1016/S0022-3913(97)70203-8
  12. Preiskel HW, Tsolka P. Telescopic prostheses for implants. Int J Oral Maxillofac Implants 1998;13:352-7
  13. Lindstrom H, Preiskel H. The implant-supported telescopic prosthesis: a biomechanical analysis. Int J Oral Maxillofac Implants 2001;16:34-42
  14. Preiskel H, Tsolka P. Cement-and screw-retained implantsupported prostheses: up to 10 years of follow-up of a new design. Int J Oral Maxillofac Implants 2004;19:87-91
  15. Robert G. Restorative dental materials, 9th ed: Mosby, 1993, p54
  16. Phillips RW. Skinner's science of dental materials, 8th ed: WB Saunders, 1982, p55
  17. Kenneth AJ. Phillips’science of dental materials, 10th ed: WB Saunders, 1996, p66
  18. Cook SD, Weinstein AM, Klawitter JJ. A three-dimensiona l finite element analysis of a porous rooted Co-Cr-Mo alloy dental implant. J Dent Res 1982;61:25-9 https://doi.org/10.1177/00220345820610010501
  19. Katona TR, Winkler MM. Stress analysis of a bulk-filled Class V light-cured composite restoration. J Dent Res 1994;73:1470-7 https://doi.org/10.1177/00220345940730081201
  20. Ko HJ, Chung CH. Finite element analysis of stresses induced by osseointegrated prostheses with or without connection between natural tooth and osseointegrated abutments. J Korean Acad Prosthodont 1991;29:147-60
  21. Kim DW, Kim YS. A study on the osseointegrated prosthesis using three dimensional finite element method. J Korean Acad Prosthodont 1991;29:167-214
  22. Squier RS, Psoter WJ, Taylor TD. Removal torques of conical, tapered implant abutments: the effects of anodization and reduction of surface area. Int J Oral Maxillofac Implants 2002;17:24-7
  23. Lum LB, Osier JF. Load transfer from endosteal implants to supporting bone: an analysis using statics. Part one: Horizontal loading. J Oral Implantol 1992;18:343-8
  24. Lum LB, Osier JF. Load transfer from endosteal implants to supporting bone: an analysis using statics. Part two: Axial loading. J Oral Implantol 1992;18:349-53
  25. Clelland NL, Lee JK, Bimbenet OC, Gilat A. Use of an axisymmetric finite element method to compare maxillary bone variables for a loaded implant. J Prosthodont 1993;2:183-9 https://doi.org/10.1111/j.1532-849X.1993.tb00405.x
  26. M$\"{o}$llersten L, Lockowandt P, Lind$\'{e}$n LA. Comparison of strength and failure mode of seven implant systems: an in vitro test. J Prosthet Dent 1997;78:582-91 https://doi.org/10.1016/S0022-3913(97)70009-X
  27. Norton MR. Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. J Prosthet Dent 1999;81:159-66 https://doi.org/10.1016/S0022-3913(99)70243-X
  28. Boggan RS, Strong JT, Misch CE, Bidez MW. Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants. J Prosthet Dent 1999;82:436-40 https://doi.org/10.1016/S0022-3913(99)70030-2
  29. Holmes DC, Grigsby WR, Goel VK, Keller JC. Comparison of stress transmission in the IMZ implant system with polyoxymethylene or titanium intramobile element: a finite element stress analysis. Int J Oral Maxillofac Implants 1992;7:450-8
  30. Kwon JH, Choi MH, Kim YL, Cho HW. Three-dimensional finite element stress analysis of single implant restoration using different fixture and abutment screw diameters. J Korean Acad Prosthodont 2005;43:105-19

Cited by

  1. Biomechanical Effects of Retention Types (Cement and Screw-Cement Retained Prosthesis) in Implant Prosthesis vol.37, pp.3, 2009, https://doi.org/10.7736/jkspe.019.069